Químicos sintetizan por primera vez una molécula oceánica que podría combatir el Parkinson

Para producir ácido lisodendórico A, el equipo utilizó un método que, según dicen, puede ayudar a acelerar el proceso de descubrimiento de fármacos

23.01.2023 - Estados Unidos

Químicos orgánicos de la UCLA han creado la primera versión sintética de una molécula recientemente descubierta en una esponja marina que podría tener beneficios terapéuticos para la enfermedad de Parkinson y trastornos similares. La molécula, conocida como ácido lisodendórico A, parece contrarrestar otras moléculas que pueden dañar el ADN, el ARN y las proteínas e incluso destruir células enteras.

pixabay.com

Imagen simbólica

Y en un giro interesante, el equipo de investigación utilizó un compuesto inusual y largamente olvidado llamado aleno cíclico para controlar un paso crucial en la cadena de reacciones químicas necesarias para producir una versión utilizable de la molécula en el laboratorio - un avance que dicen podría resultar ventajoso en el desarrollo de otras moléculas complejas para la investigación farmacéutica.

Los resultados se publican en la revista Science.

"La inmensa mayoría de los medicamentos actuales se fabrican mediante química orgánica sintética, y una de nuestras funciones en el mundo académico es establecer nuevas reacciones químicas que puedan utilizarse para desarrollar rápidamente medicamentos y moléculas con estructuras químicas complejas que beneficien al mundo", afirma Neil Garg, catedrático de Química y Bioquímica Kenneth N. Trueblood de la UCLA y autor correspondiente del estudio.

Según Garg, un factor clave que complica el desarrollo de estas moléculas orgánicas sintéticas es la quiralidad. Muchas moléculas, como el ácido lisodendórico A, pueden existir en dos formas distintas que son químicamente idénticas pero que son imágenes tridimensionales especulares la una de la otra, como una mano derecha y otra izquierda. Cada versión se conoce como enantiómero.

Cuando se utiliza en productos farmacéuticos, un enantiómero de una molécula puede tener efectos terapéuticos beneficiosos, mientras que el otro puede no hacer nada en absoluto, o incluso resultar peligroso. Por desgracia, la creación de moléculas orgánicas en el laboratorio suele producir una mezcla de ambos enantiómeros, y eliminar o invertir químicamente los enantiómeros no deseados añade dificultades, costes y retrasos al proceso.

Para hacer frente a este reto y producir de forma rápida y eficaz sólo el enantiómero del ácido lisodendórico A que se encuentra casi exclusivamente en la naturaleza, Garg y su equipo emplearon alenos cíclicos como intermedio en su proceso de reacción de 12 pasos. Descubiertos por primera vez en la década de 1960, estos compuestos altamente reactivos nunca antes se habían utilizado para fabricar moléculas de tal complejidad.

"Los alenos cíclicos", explica Garg, "han caído en el olvido desde su descubrimiento hace más de medio siglo. Esto se debe a que tienen estructuras químicas únicas y sólo existen durante una fracción de segundo cuando se generan".

El equipo descubrió que podía aprovechar las cualidades únicas de los compuestos para generar una versión quiral concreta de los alenos cíclicos, lo que a su vez dio lugar a reacciones químicas que finalmente produjeron el enantiómero deseado de la molécula A del ácido lisodendórico casi exclusivamente.

Aunque la capacidad de producir sintéticamente un análogo del ácido lisodendórico A es el primer paso para comprobar si la molécula puede poseer cualidades adecuadas para futuras terapias, el método para sintetizar la molécula es algo que podría beneficiar inmediatamente a otros científicos implicados en la investigación farmacéutica, dijeron los químicos.

"Desafiando el pensamiento convencional, ahora hemos aprendido a fabricar alenos cíclicos y a utilizarlos para fabricar moléculas complicadas como el ácido lisodendórico A", afirmó Garg. "Esperamos que otros también puedan utilizar los alenos cíclicos para fabricar nuevos medicamentos".

Nota: Este artículo ha sido traducido utilizando un sistema informático sin intervención humana. LUMITOS ofrece estas traducciones automáticas para presentar una gama más amplia de noticias de actualidad. Como este artículo ha sido traducido con traducción automática, es posible que contenga errores de vocabulario, sintaxis o gramática. El artículo original en Inglés se puede encontrar aquí.

Publicación original

Más noticias del departamento ciencias

Noticias más leídas

Más noticias de nuestros otros portales

¿Está revolucionando la inteligencia artificial las ciencias de la vida?