A fresh look inside the protein nano-machines
© UNIGE - Jean-Pierre Eckmann
A protein is a chain made of twenty different kinds of amino acids with elaborate interactions, and, unlike standard physical matter, it is selected by evolution. "The blueprint for protein synthesis is written in long DNA genes, but we show that only a small fraction of this huge information space is used to make the functional protein", explains Jean-Pierre Eckmann, Professor at the Department of Theoretical Physics from the Faculty of Science of UNIGE.
Together with Prof. Tsvi Tlusty from the Center for Soft and Living Matter, Institute for Basic Science (IBS) in Korea and Prof. Albert Libchaber from the Rockefeller University in New York, Prof. Eckmann shows that the only changes in the code that matter are those occurring in the segment of the gene coding the mechanically relevant hinges of the nano-machine. The changes in other regions of this highly redundant code have no impact. "We are now using this new approach to understand the relation between the function and dynamics of several important proteins."
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.