Improving Kinase Inhibitors
Molecular editing of resorcylic acid lactones
Kinases, by definition, phosphorylate their substrates, and so adenosine triphosphate (ATP) is a co-substrate common to all kinases. As many current kinase inhibitors are based on the adenosine scaffold, such compounds can often present difficulty in engineering specificity. Winssinger and co-workers focused their attention on the unique RAL pharmacophore, as various RAL-based small molecules had been shown previously to irreversibly and selectively inhibit certain kinases. Winssinger's research group subjected the fundamental RAL pharmacophore to 'molecular editing' in order to generate two fluoroenones with improved properties; these, along with other compounds resulting from diversification of the RAL scaffold, also shed light on modifications that affect other important aspects such as metabolic stability.
"The significance of this work does not lie solely in the chemistry and IC50 values, but also in the fact that there is a tremendous interest in irreversible kinase inhibitors that can be used to engineer kinase specificity and to profile kinase activity," says Winssinger. "The cis-enone resorcylic acid lactones represent an alternative scaffold to the heterocyclic ones, which have been previously exploited. From a therapeutic perspective, compounds derived from this pharmacophore are the first irreversible inhibitors of kinases involved in angiogenesis [vascular endothelial growth factor receptors (VEGFRs) and platelet-derived growth factor receptors (PDGFRs)]."
Original publication: Nicolas Winssinger et al.; ""Molecular Editing of Kinase-Targeting Resorcylic Acid Lactones (RAL): Fluoroenone RAL"; ChemMedChem 2010, 5, No. 8, 670–673.
Most read news
Topics
Organizations
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.