What Our Genetic Information Tells Us About Type 2 Diabetes Risk and Complications
Largest Study on Genetic Risk for Diabetes Now Published
The prevalence of diabetes continues to increase significantly. According to the WHO, over 400 million people worldwide are living with type 2 diabetes (T2D), a disease with various symptoms and causes. Even though effective treatment options are becoming available, the option for precision medicine is still limited. For many patients, treatment strategies still rely on trial and error. Importantly, T2D can lead to numerous secondary health issues, and there is a critical need for a deeper comprehension of the disease mechanisms to predict the risk of T2D complications and intervene early.
Largest Study on Genetic Risk for Diabetes Now Published
Collaboration among scientists is essential for evaluating vast patient data and achieving a comprehensive understanding of genomic risk variants. Helmholtz Munich scientists are part of the newly formed Type 2 Diabetes Global Genomics Initiative (T2D-GGI). The first outcome of the initiative is the largest genome-wide association study (GWAS) to date. GWAS is a scientific method used to find genetic variation associated with a disease.
The new study encompasses over 2.5 million individuals (428,452 with T2D). Eleftheria Zeggini, senior corresponding author of the study, remarks: “We have carried out the largest genome-wide association study for type 2 diabetes as a collaborative achievement of hundreds of researchers from across the globe. We have found novel genetic risk loci for the disease and have constructed genetic risk scores that are associated with harmful complications.”
The authors used cutting-edge computational approaches to integrate data across multiple -omics modalities. They identified eight distinct mechanistic clusters of genetic variants associated with T2D and discovered associations between individual clusters and diabetes complications.
“Our work leads to an improved understanding of disease-causing biological mechanisms. Better knowledge of progression risk for T2D complications can help put in place early interventions to delay or even prevent these debilitating medical conditions,” says Eleftheria Zeggini.
Original publication
Other news from the department science
Get the life science industry in your inbox
From now on, don't miss a thing: Our newsletter for biotechnology, pharma and life sciences brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.