A fungus gets comfortable

14-Aug-2023 - Germany

Aspergillus fumigatus strains that infect humans have a significantly altered metabolism compared to other strains in the environment. At the same time, infection with the fungus leads to an apparent change in the human lung microbiome. Researchers at the Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI) came to this conclusion after using machine learning models to analyze genome data from about 250 fungal strains and lung microbiome data from 40 patients.

Farida Tey & Mohammad Mirhakkak/Leibniz-HKI

Aspergillus fumigatus spores can be inhaled and colonize the human lung. Bioinformatics tools can analyze the genetic information of the fungus and thus help to understand how the fungus shapes the lung microbiome to its own advantage.

The fungus Aspergillus fumigatus is widely distributed in the environment, where it performs important ecological functions. At the same time, it is an opportunistic pathogen of humans. This means that it can infect people with a weakened immune system and cause life-threatening diseases like aspergillosis. Treatment is difficult due to the limited number of drugs available for fungal infections.

However, as researchers at Leibniz-HKI have discovered, fungal strains found in the environment and clinical strains from patient samples differ significantly. In a previous study, the team already found that the genetic information of about 250 Aspergillus fumigatus strains of different origins matched only by about 70 percent. By comparison, the genetic information of humans and pigs is about 95 percent identical.

"In the current study, we focused on what impact these genomic differences have on fungal metabolism in the presence of a complex lung microbiome," said study leader Gianni Panagiotou. He heads the Microbiome Dynamics department at Leibniz-HKI and holds a professorship at Friedrich Schiller University in Jena, Germany. "Understanding what might drive fungal growth, and thus survival, of A. fumigatus in different habitats might advance the development of prophylactic or therapeutic strategies to control the fungal pathogen levels."

The research team developed computer models that predict metabolic reactions and products for the 250 different strains, based on the genome data and current knowledge of metabolic pathways. "In doing so, we found that the clinical strains differ significantly from the environmental strains, especially in the area of amino acid synthesis," says Mohammad Mirhakkak, one of the two lead authors.

Mirhakkak and his co-first author Xiuqiang Chen then used the model they developed to study samples from 40 patients with cystic fibrosis before and after confirmed Aspergillus fumigatus infection. Using metagenome data from the samples, they were able to decipher the composition of the lung microbiome before and after infection. In other words, they determined microorganisms that live in each patient's lungs. "We used these data to feed our model and found that Aspergillus fumigatus appears to shape the lung microbiome to its advantage," Chen explains. Even when the researchers simulated so-called knockouts - strains of fungi that are not viable on their own because certain metabolic pathways have been turned off - they survived thanks to the help of the lung microbiome. At least in the computer simulation, other microorganisms then took over the production of vital metabolites.

"Our results show that when developing new drugs, we need to keep in mind, on the one hand, the enormous variability of the metabolism of Aspergillus fumigatus, and on the other hand, that we also need to keep the entire microbiome in mind," Panagiotou said.

Original publication

Other news from the department science

Most read news

More news from our other portals

Is artificial intelligence revolutionizing the life sciences?

Last viewed contents

Traceless materials secures €36.6 Million Series A to build first industry plant for bio-circular alternative to plastic - Change-enabler for driving the green transformation of the industry

Traceless materials secures €36.6 Million Series A to build first industry plant for bio-circular alternative to plastic - Change-enabler for driving the green transformation of the industry

CNB-CSIC covid-19 vaccine successfully completes preclinical efficacy and immunogenicity tests against SARS-CoV-2 and variants in animal models - The project shows high immunogenicity and 100% protection against SARS-CoV-2 infection in mice, hamsters and macaques.

CNB-CSIC covid-19 vaccine successfully completes preclinical efficacy and immunogenicity tests against SARS-CoV-2 and variants in animal models - The project shows high immunogenicity and 100% protection against SARS-CoV-2 infection in mice, hamsters and macaques.

Researchers produce nanodiamonds capable of delivering medicinal and cosmetic remedies through the skin - Using advanced optics technology, the exact location and concentration of nanodiamonds can be monitored non-invasively, eliminating the need for a biopsy

Researchers produce nanodiamonds capable of delivering medicinal and cosmetic remedies through the skin - Using advanced optics technology, the exact location and concentration of nanodiamonds can be monitored non-invasively, eliminating the need for a biopsy

CureVac’s First-Generation COVID-19 Vaccine Candidate, CVnCoV, Continues Toward Phase 2b/3 Efficacy Readout in Variant-rich Environment Following DSMB Recommendation

CureVac’s First-Generation COVID-19 Vaccine Candidate, CVnCoV, Continues Toward Phase 2b/3 Efficacy Readout in Variant-rich Environment Following DSMB Recommendation

Evotec and Sernova announce exclusive strategic partnership for iPSC-based beta cell replacement therapy to advance a 'functional cure' for diabetes

Evotec and Sernova announce exclusive strategic partnership for iPSC-based beta cell replacement therapy to advance a 'functional cure' for diabetes

Wanted: Corrosion - Hereon team identifies which materials are particularly suitable for self-dissolving bone implants

Wanted: Corrosion - Hereon team identifies which materials are particularly suitable for self-dissolving bone implants

CureVac Enters into an Exclusive Collaborative Research Agreement with Yale University

Defect in fruit fly respiratory system may provide insights into human aortic aneurysms

Defect in fruit fly respiratory system may provide insights into human aortic aneurysms

Infrareal takes over pharmaceutical and biotech site in Orth, Lower Austria from Takeda - "Our expertise will help us to further expand the site, and we are hoping to attract more companies from these industrie"

Infrareal takes over pharmaceutical and biotech site in Orth, Lower Austria from Takeda - "Our expertise will help us to further expand the site, and we are hoping to attract more companies from these industrie"

Making the oxygen we breathe, a photosynthesis mechanism exposed

Making the oxygen we breathe, a photosynthesis mechanism exposed