Checkpoint Charlie in der Zelle: Wie ein molekularer "Agent" die Verteilung der Chromosomen kontrolliert

17.03.2009 - Österreich

Sie spielt sich im Verborgenen ab und ist im Menschen wie im Wurm einer der wichtigsten Prozesse: Durch die Zellteilung entwickelt sich aus einer einzigen befruchteten Eizelle ein komplexer Organismus, wachsen neue Haare nach oder heilen Wunden. Wissenschaftler am Forschungsinstitut für Molekulare Pathologie (Wien) und am Max-Planck-Institut für Biophysikalische Chemie (Göttingen) haben jetzt entdeckt, wie die Verteilung der Erbinformation zeitlich exakt koordiniert wird.

IMP, Wien

Menschliche Zellen in verschiedenen Stadien der Zellteilung unter dem Mikroskop sichtbar gemacht. Die Chromosomen sind blau, der Spindelapparat grün eingefärbt.

Rund zwei Meter wäre das Erbgut einer menschlichen Zelle lang, würde man die Desoxyribonukleinsäure (DNA)-Moleküle aller 46 Chromosomen aneinanderreihen. Wenn sich die Zelle teilt, muss auch das gesamte Erbgut korrekt auf die Tochterzellen verteilt werden - ein wahres Kunststück für die Zelle. In gesunden Zellen des menschlichen Körpers funktioniert dieser Vorgang täglich viele tausend Male völlig fehlerfrei. In Tumorzellen passieren dagegen häufig Fehler.

Vor jeder Teilung werden die Chromosomen zunächst verdoppelt und es entstehen zwei identische DNA-Moleküle. Diese werden mit zahlreichen molekularen "Zugseilen" - dem sogenannten Spindelapparat - mit den weit entfernten Polen der Zelle verbunden und exakt nebeneinander ausgerichtet. Erst dann dürfen die Chromosomen durch die Zugfasern an die entgegengesetzten Zell-Pole gezogen werden. Werden Chromosomen zu früh getrennt und ungleich auf die Tochterzellen verteilt, drohen Krebs, Trisomie und verfrühte Alterungsprozesse.

Die eigentliche Trennung der Chromosomen initiiert eine molekulare Nanomaschine: der sogenannte "Anaphase einleitende Komplex" oder "Zyklosom" (kurz "APC/C"). Dazu beseitigt der Komplex all diejenigen Proteine, die den Fortlauf der Zellteilung blockieren. Mit einer Art Aufkleber werden die Hemm-Proteine zu zellulärem "Müll" deklariert und im "Müllschredder" der Zelle in ihre Bausteine zerlegt. Dieser Komplex darf allerdings erst dann aktiv werden, wenn alle 46 Chromosomen in symmetrischer Weise mit beiden Polen der Zelle verbunden sind. Ist auch nur ein einziges dieser 46 Chromosomen falsch oder gar nicht mit dem Spindelapparat verbunden, wird ein Mechanismus aktiviert, der auch als Spindel-"Checkpoint" bezeichnet wird - in Anlehnung an die militärischen Checkpoints des kalten Krieges. Dieser Spindel-Checkpoint blockiert APC/C und stoppt dadurch die Trennung der Chromosomen so lange, bis sie alle korrekt mit dem Spindelapparat verbunden sind. Doch wie steuert der Spindel-Checkpoint die Chromosomen-Trennung und schaltet um von "stopp" auf "go"?

Wissenschaftler um Jan-Michael Peters am Forschungsinstitut für Molekulare Pathologie und Holger Stark vom Max-Planck-Institut für biophysikalische Chemie wissen jetzt eine Antwort auf diese Frage. Durch elektronenmikroskopische Untersuchungen konnten Peters und Stark erstmals sichtbar machen, wie sich APC/C verändert, wenn dieser Komplex durch den Spindel-Checkpoint gehemmt wird.

"Wir haben entdeckt, dass sich ein zweiter kleiner Proteinkomplex an APC/C anlagert, wenn der Spindel-Checkpoint aktiviert wird - quasi ein molekularer "Agent", der sich bei APC/C einschleicht", erklärt Strukturbiologe Stark. Dieser kleine Komplex stellt den größeren APC/C-Komplex "kalt", indem er eine Bindungsstelle blockiert, mit der APC/C normalerweise die Hemm-Proteine einfängt, als Zell-"Müll" markiert und dadurch nachfolgend die Trennung der Schwesterchromatiden auslöst. Ist der Proteinkomplex an APC/C gebunden, kann dieser seine Substrate nicht erkennen; als Folge trennen sich die Chromosomen nicht mehr. "Diese Ergebnisse sind ein Meilenstein auf unserem Weg zum Verständnis der menschlichen Zellteilung", sagt Peters. "Vielleicht kann uns dieses Wissen in der Zukunft auch helfen zu verstehen, warum Krebszellen sich so anders verhalten als normale Zellen".

Originalveröffentlichung: Franz Herzog et al.; "Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex"; Science 2009, 323:1477-1481

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!