Neue Antibiotika-Kandidaten aus Braunschweig
Substanzen wirken auch gegen antibiotikaresistente Bakterien
Antibiotika sind aus der modernen Medizin nicht wegzudenken. Ihnen verdanken wir, dass Seuchen wie Pest, Cholera oder Tuberkulose zumindest in den Industriestaaten der Vergangenheit angehören. Doch immer mehr Bakterien werden resistent gegen die Medikamente. Deshalb brauchen Ärzte dringend neue Antibiotika. Sie zu entwickeln ist ein schwieriges Unterfangen: Die Wirkstoffe dürfen nur die Bakterien, nicht aber menschliche Zellen angreifen. Die Angriffsziele der Antibiotika in den Bakterien sind deshalb eng begrenzt; jede neue Wirkstruktur ist den Antibiotika-Forschern hoch willkommen, insbesondere, wenn damit ein neuer Wirkmechanismus aufgezeigt wird.
Bei der Suche nach Kandidaten, die sich zu solch neuartig wirkenden Medikamenten entwickeln lassen, hat das HZI eine gute Ausgangsposition: Das Institut verfügt über eine Sammlung von Naturstoffen, die sich in der Vergangenheit bereits als sehr ergiebig für die Wirkstoffforschung erwiesen haben. Aus der Sammlung stammt beispielsweise das Epothilon, das im vergangenen Jahr als Krebsmedikament zugelassen wurde. Produziert werden die Substanzen von Myxobakterien.
Den Anfang der aktuellen Erfolgsgeschichte beschreibt der HZI-Biologe Dr. Herbert Irschik: „In unserem Fundus haben wir drei Stoffe – Myxopyronin, Corallopyronin und Ripostatin – isoliert und chemisch charakterisiert. Ihre antibiotische Wirkung konnten wir bereits vor etlichen Jahren nachweisen. Diese richtet sich auf ungewöhnliche Weise gegen die bakterielle RNA-Polymerase, also das Enzym, das die DNA der Krankheitserreger abliest. In eukaryontischen Zellen, zu denen auch die des Menschen gehören, greifen die Substanzen die RNA-Polymerase nicht an.“ Doch bevor diese ersten Indizien die Substanzgruppe wirklich zu Antibiotika-Kandidaten machten, mussten Wissenschaftler genauer herausfinden, wie die Bakterien am Wachstum gehindert werden. „Wir haben deshalb zunächst biotechnologische Prozesse entwickelt, mit denen wir die myxobakteriellen Naturstoffe in größeren Mengen produzieren und isolieren können“, erklärt der an der Studie beteiligte HZI-Chemiker Dr. Rolf Jansen.
Anschließend kam es zur Kooperation mit der US-amerikanischen Forschergruppe an der Rutgers-Universität. Die Strukturbiologen untersuchten an der RNA Polymerase, wie die aus dem HZI stammenden Substanzen wirken. Dabei bestätigten sich die Hinweise, dass die Naturstoffe die bakterielle RNA-Polymerase in neuartiger Weise blockieren: Die Naturstoffe koppeln sich innerhalb der RNA-Polymerase an eine andere Stelle an als die bisher bekannten Antibiotika. Sie verbinden sich mit dem Enzym – das aussieht wie eine geöffnete Krabbenschere – direkt an seiner Gelenkstelle. Das scherenförmige Enzym kann sich dadurch nicht mehr öffnen. So verhindern die Wirkstoffe, dass sich die RNA-Polymerase an die abzulesende DNA anheften kann – das Ablesen des Erbmaterials ist komplett unterbunden. Dieser neue Mechanismus wirkt auch bei Bakterien, die gegen herkömmliche Antibiotika bereits resistent sind.
Die Erkenntnisse der US-Forscher sind für Jansen und Irschik das Signal, dass ihren Substanzen nun ein langer Entwicklungsprozess bevorsteht: „Myxopyronin, Corallopyronin und Ripostatin sind in der Form, wie wir sie jetzt vorliegen haben, noch nicht als Medikament geeignet“, erklärt Irschik. Jetzt sei weitere Forschung der Chemiker nötig, wie Jansen ergänzt: „Unsere Naturstoffe sind so genannte Leitstrukturen, die die Chemiker im Detail verändern werden, um ihre antibiotische Wirkung zu verbessern und Nebenwirkungen zu minimieren. Dann folgen ausführliche Tests, die mehrere Jahre dauern können, bevor die Mediziner ein neues Medikament in die Hände bekommen.“
Originalveröffentlichung: Jayanta Mukhopadhyay et al.; The RNA Polymerase “Switch Region” Is a Target for Inhibitors; Cell, 17 October 2008, 135: 295-307