Krebswirkstoff aus der Natur: TUM-Forscher klären Mechanismus eines Eiweißblockers aus Bakterien auf
Bakterien haben es nicht leicht, Pflanzen zu befallen, denn deren wächserne Oberfläche und Zellwände stellen für die Mikroben schwer zu überwindende Hürden dar. Gelingt der Durchbruch trotzdem, beginnt die Pflanze in vielen Fällen, sich aktiv zu wehren: Sie produziert ein ganzes Arsenal spezieller Eiweiße, die die biochemische Abwehr gegen das Pathogen in Gang setzen. Damit diese Abwehr funktioniert, müssen Proteine, die die Abwehr unterdrücken, abgebaut werden. Dies übernehmen die zellulären Entsorgungsstationen, die so genannten Proteasomen. Sie zerlegen zum Abbau bestimmte Eiweiße wieder in ihre Bausteine.
Doch die biochemischen Verteidigungslinien der Pflanzen sind nicht unüberwindbar: Bakterien der Art Pseudomonas syringae pathovar syringae - kurz Pss - sondern einen kleinen, aber höchst effektiven Eiweißring namens Syringolin A ab. Der stiftet in den Blattzellen der unfreiwilligen Pss-Wirtin, der Buschbohne, Verwirrung und führt so den Angriff der Pss-Bakterien zum Erfolg.
Was dieser Eiweißring in den Blättern der Buschbohne genau bewirkt, haben Wissenschaftler der TUM zusammen mit Kooperationspartnern der Max-Planck-Institute in Martinsried und Dortmund sowie Kollegen aus der Schweiz, Großbritannien und den USA herausgefunden: Syringolin A blockiert in den Blättern die Proteasomen der Buschbohne, indem es sich in einer ungewöhnlich festen chemischen Bindung an sie kettet. Das führt zu einem wahren Proteinstau in den Buschbohnenblättern, und in der Folge gerät die pflanzliche Abwehr dadurch aus den Fugen.
Außerdem klärten die Forscher die Struktur des Syringolins auf - und kamen so auf die Spur einer ganzen Eiweißfamilie: Sie fanden eine Reihe ähnlicher Verbindungen in anderen Mikroorganismen, die ähnlich wie Syringolin A funktionieren.
Diese Erkenntnisse sind nicht nur bedeutsam, um etwa Schutzmittel für die Buschbohne zu entwickeln. Syringolin A & Co. könnten sich in Zukunft auch für die Krebsbekämpfung eignen. Denn auch menschliche Tumorzellen produzieren sehr viele Proteine und sind daher von gut funktionierenden Proteasomen abhängig. Ein synthetischer Proteasom-Hemmstoff ist bereits seit einigen Jahren als Therapeutikum erhältlich. Möglicherweise könnte er Unterstützung durch den Naturstoff Syringolin A erhalten, der in ersten Experimenten mit kultivierten Krebszellen bereits wachstumshemmende Wirkung zeigte.
Der Biochemiker Groll sieht sogar noch weiteres Potenzial in Syringolin A & Co: Fänden sich geeignete Vertreter ihrer Klasse, wäre deren Einsatz auch gegen bakterielle Krankheitserreger denkbar, die Mensch oder Pflanze plagen. Die Grundlage für die Entdeckung und Erforschung dieser neuartigen Naturstoffe ist jedenfalls gelegt.
Originalveröffentlichung: Nature 2008, 452, 755-758.
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.