Forscher finden molekulare Grundlage chronisch entzündlicher Darmerkrankungen

Wissenschaftler entschlüsseln einen wichtigen Signalweg für die Entstehung von Morbus Crohn und Colitis Ulcerosa

19.03.2007

Weltweit leiden mehr als 4 Millionen Menschen an chronisch entzündlichen Darmerkrankungen wie Morbus Crohn oder Colitis ulcerosa. Um neue, effektivere Therapien gegen diese Erkrankungen zu entwickeln, ist ein genaues Verständnis der zugrunde liegenden molekularen Prozesse nötig. Wissenschaftler der Universität Köln, des Klinikums der Johannes Gutenberg-Universität Mainz, des EMBL (European Molecular Biology Laboratory) in Italien sowie deren Kooperationspartner haben ein zelluläres Signal entdeckt, das eine chronisch entzündliche Darmerkrankung auslösen kann. Die Forschungsergebnisse, die in Nature veröffentlicht wurden, zeigen, dass die Hemmung eines zellulären Signalmoleküls in Mäusen zu einer schweren Darmentzündung führt. Sie enthüllen einen molekularen Mechanismus, der vermutlich auch beim Menschen an der Entstehung chronisch entzündlicher Darmerkrankungen entscheidend beteiligt ist.

Der menschliche Darm beherbergt eine enorme Zahl von Bakterien. Diese sind normalerweise unschädlich für den Körper und helfen sogar bei der Nahrungs-Verwertung. Wenn sie jedoch in die Darmwand eindringen, können diese Bakterien gefährlich werden und Krankheiten verursachen. Daher ist die Darmoberfläche von einer dünnen Zellschicht so genannter Epithelzellen bedeckt, die als Barriere wirken und die Bakterien vom Eindringen in die Darmwand abhalten. Die Mechanismen, die diese Barriere - und somit einen gesunden Darm - erhalten , sind weitgehend unbekannt.

Arianna Nenci aus der Arbeitsgruppe von Prof. Manolis Pasparakis an der Universität Köln und Christoph Becker aus der Arbeitsgruppe von Prof. Markus Neurath an der Universitätsklinik Mainz untersuchten in Epithelzellen des Darmes die Rolle eines Signalmoleküls - im Fachjargon: NF-Kappa-B - , das den Zellen hilft, mit "Stress" umzugehen. Mit genetischen Methoden züchteten die Forscher Mäuse, deren Epithelzellen im Darm ein bestimmtes Protein - genannt NEMO -fehlt, das wichtig für die Aktivierung des Signalmoleküls NF-Kappa-B ist. Als Resultat einer fehlenden Aktivierung von NF-Kappa-B entwickelten die Mäuse eine schwere chronisch entzündliche Darmerkrankung, ähnlich der Darmentzündung beim Menschen.

Unterhalb der Epithelschicht befinden sich Zellen des Darm-Immunsystems, des größten Immunsystems im Körper. Es erkennt eindringende Bakterien und erzeugt eine starke Immunreaktion, um die Eindringlinge zu bekämpfen. Im Zuge der Bekämpfung der Bakterien produzieren die Zellen des Immunsystems eine Vielzahl von Stoffen, die letztendlich die Symptome der Entzündung verursachen.

"Hier schließt sich der Teufelskreis", erklärt Markus Neurath, Professor an der Johannes Gutenberg-Universität Mainz. "Entzündungssignale gelangen zu den Epithelzellen, die durch das Fehlen von NF-Kappa-B sehr empfindlich darauf reagieren und sterben. Dies führt zu noch größeren Lücken in der Epithelschicht, so dass noch mehr Bakterien in die Darmwand eindringen können. Das Resultat ist eine fortschreitende Immunreaktion, die zu einer chronischen Entzündung führt, wie wir sie von Patienten mit chronisch entzündlichen Darmerkrankungen kennen."

Die Erkenntnis, dass eine gestörte Aktivierung des NF-Kappa-B Signalweges im Darmepithel zur Entstehung einer Darmentzündung führen kann, resultiert in einem neuen Modell für die Entstehung chronisch entzündlicher Darmerkrankungen. Die Ergebnisse der "Nature"-Publikation ebnen daher den Weg für völlig neue Therapiestrategien.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...