Mit Licht zu höherer Präzision in der zellmechanischen Forschung
Mithilfe von Optogenetik und mathematischer Modellierung zentrales Molekül für die Zellmechanik identifiziert
Patrick Oakes
Um das Blut durch den Körper zu pumpen oder um Gliedmaßen zu bewegen, benötigt es Muskelzellen, die sich auf ein äußeres Signal hin zusammenziehen. Aber auch alle anderen Zelltypen in unserem Körper erzeugen kontinuierlich Kräfte, und zwar mithilfe von muskelartigen Strukturen, die in jeder menschlichen Zelle vorhanden sind. Zellen nutzen diese Kräfte, um mechanische Änderungen in ihrer Umgebung zu „ertasten“, was zum Beispiel bei der Heilung von Wunden eine wichtige Rolle spielt. Die zellulären Muskeln werden auch bei der Zellteilung und bei der Zellbewegung aktiviert.
Ulrich Schwarz, der sowohl am BioQuant-Zentrum als auch am Institut für Theoretische Physik der Universität Heidelberg forscht, beschäftigt sich schon seit längerem mit der Messung von Zellkräften. „Die Rolle der mechanischen Kräfte für das Verhalten von biologischen Zellen wurde lange übersehen, aber seit zwei Jahrzehnten hat sich dazu ein schnell wachsendes Forschungsgebiet, die Mechanobiologie, gebildet“, so Prof. Schwarz. Seine Arbeitsgruppe entwickelt Computeralgorithmen, die aus den Verformungen der Umgebung die Kräfte der Zelle errechnen können. Basierend auf diesen Informationen werden mathematische Modelle geschaffen, die die Mechanik der Zelle beschreiben.
„Um eine hohe Präzision bei der Zellkraftmessung zu erreichen, müssen die Zellen auf flachen Unterlagen untersucht werden. Darauf lassen sich jedoch nicht so kontrolliert Kräfte erzeugen wie im menschlichen Körper“, erklärt Prof. Schwarz. Abhilfe konnten hier die experimentellen Arbeitsgruppen von Prof. Dr. Michael Glotzer und Prof. Dr. Margaret Gardel aus Chicago schaffen. Sie haben eine neue optogenetische Methode entwickelt, um die Zellkräfte gezielt mit Licht zu steuern. Zusammen mit drei Mitarbeitern seiner Arbeitsgruppe ist es Prof. Schwarz gelungen, die Daten aus Chicago mithilfe speziell entwickelter Algorithmen zu analysieren.
Bei ihrer mathematischen Auswertung machten die Forscher eine überraschende Entdeckung: „Wir haben die Rolle verschiedener Moleküle für die Krafterzeugung und Kraftübertragung untersucht und dabei entdeckt, dass ein bestimmtes Reparaturprotein namens Zyxin dafür ganz wesentlich ist“, erklärt Prof. Schwarz. „Das legt nahe, dass sich die Zelle kontinuierlich selbst zum mechanischen Reißen bringt, so wie sich ein Reißverschluss unter Kraft öffnet. Nur durch eine ständige Reparatur kann die Zelle also die elastischen Eigenschaften erhalten, die für ihre Funktion so wichtig sind.“
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
P. W. Oakes, E. Wagner, C. A. Brand, D. Probst, M. Linke, U. S. Schwarz, M. Glotzer, and M. L. Gardel; "Optogenetic Control of RhoA Reveals Zyxin-mediated Elasticity of Stress Fibers"; Nature Communications; 8:15817 (2017)
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.