„Sehhilfe“ für massenspektrometrische Bildgebung
Verteilung chemischer Substanzen kann nun auch an biologischen Proben mit unebenen Oberflächen sichtbar gemacht werden
Benjamin Bartels, Max-Planck-Institut für chemische Ökologie
Benjamin Bartels, Max-Planck-Institut für chemische Ökologie
Mit der Methode der Laser-Ablations-Elektrospray-Ionisierung (LAESI), einem massenspektrometrischen bildgebenden Verfahren, ist es möglich, die Verteilung verschiedener chemischer Verbindung in einer biologischen Probe sichtbar zu machen. Dabei wird mit Hilfe einer Lasers ein winziger Teil der Probe durch lokale Erhitzung entfernt: Irgendwann platzt der angestrahlte Teil der Probe auf und etwas Dampf entweicht. Die dabei gebildete Dampfwolke wird anschließend durch einen elektrisch aufgeladenen Nebel ionisiert, sodass die im Dampf enthaltenen Substanzen vom Massenspektrometer aufgespürt werden können. „Die räumlich eingegrenzte Laser-Sondierung ermöglicht es uns, die chemischen Informationen so zusammenzutragen, dass ein Gesamtbild entsteht, ähnlich wie auch Fotos aus einzelnen Pixeln zusammengesetzt sind, “ beschreibt Studienleiter Aleš Svatoš die technischen Grundlagen des Verfahrens.
Die Verteilung von chemischen Verbindungen in Blüten, Blättern, Stängeln und anderen Pflanzenteilen ist für die ökologische Forschung von großer Bedeutung. Viele solcher Verbindungen sind sogenannte sekundäre Pflanzenstoffe, die von Pflanzen gebildet werden, um beispielsweise Bestäuber anzulocken sowie Fraßfeinde oder schädliche Erreger abzuwehren. Dabei spielt es nicht nur eine Rolle, dass bestimmte Moleküle im Gewebe angereichert werden, sondern auch wo dies der Fall ist. Ist ein bestimmter Abwehrstoff gleichmäßig in einem Pflanzenblatt verteilt oder gibt es spezielle Drüsen, die durch die Bildung chemischer Substanzen Schutz verleihen? In welchen Teilen der Außenhaut eines Insekts sind Gifte oder chemische Botenstoffe für die Kommunikation mit Artgenossen besonders stark angereichert? Auch die Wechselwirkungen zwischen verschiedenen Lebewesen auf molekularer Ebene sind von Interesse.
„Die größte Herausforderung bei derartigen Untersuchungen ist es, die Beschaffenheit einer Probe über den gesamten Analyseprozess hinweg zu erhalten. Leider kommt es oft vor, dass die Probenvorbereitung die Analyseergebnisse beeinflusst, weil die chemische Anordnung der Probe verändert wird. Üblicherweise werden im Vorbereitungsprozess aus einer biologischen Probe dünne und flache Schnitte angefertigt, denn bislang konnten nur flache Proben gewährleisten, dass der Laser optimal fokussiert. Dies wiederum ist wichtig für zuverlässige Analyseergebnisse,“ fasst Benjamin Bartels, der Erstautor der Studie und Doktorand in der Arbeitsgruppe Massenspektrometrie, die Grenzen des bisherigen Verfahrens zusammen.
In der chemischen Ökologie haben viele biologische Proben eine unebene Oberfläche: Pflanzenblätter haben oftmals haarige Strukturen oder sie sind gewellt. Auch Raupen können haarig sein, immer sind sie jedoch rundlich und nicht flach. Benjamin Bartels und und Aleš Svatoš, der die Arbeitsgruppe Massenspektrometrie leitet, haben daher das LAESI-Verfahren an unebene Oberflächen angepasst, um die Verteilung von chemischen Substanzen auch auf Proben mit ausgeprägten dreidimensionalen Formen abzubilden, ohne die Zuverlässigkeit klassischer Analysen aufs Spiel zu setzen.
Das neue Instrument misst das Höhenprofil der jeweiligen Probe vor der eigentlichen massenspektrometrischen Analyse aus. Die aufgezeichneten Höhenprofile werden für die Korrektur der Entfernung zwischen der fokussierenden Linse des Lasers und der Probenoberfläche genutzt. Auf diese Art und Weise wird ein wesentlicher Faktor für die zuverlässige Lasersondierung während des gesamten Experiments konstant gehalten und die Methode liefert auch für Proben mit dreidimensionalen Strukturen verlässliche Daten. „Dies bedeutet, dass wir die Verteilung von Molekülen auf biologischen Oberflächen eines wesentlich größeren Probenspektrums untersuchen können. Ich denke da beispielsweise an das Außenskelett von Insekten, Mikrobengemeinschaften in ihrer natürlichen Umgebung oder an den Vergleich der Inhalte einzelner Blatthaare einer Pflanze,“ erläutert Benjamin Bartels die Vorteile der Weiterentwicklung.
Die Forscher planen nun weitere Verbesserungen und Verfeinerungen der Methode, damit LAESI auch für Routine-Messungen an unebenen Oberflächen eingesetzt werden kann.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!
Themenwelt Massenspektrometrie
Die Massenspektrometrie ermöglicht es uns, Moleküle aufzuspüren, zu identifizieren und ihre Struktur zu enthüllen. Ob in der Chemie, Biochemie oder Forensik – Massenspektrometrie eröffnet uns ungeahnte Einblicke in die Zusammensetzung unserer Welt. Tauchen Sie ein in die faszinierende Welt der Massenspektrometrie!