Smart, kompakt und vielseitig: „Biosensoren“ sollen patientennahe Diagnostik erleichtern
Heiko Grandel
Die Biosensoren könnten im Körperinneren zu Diagnosezwecken eingesetzt werden, beispielsweise um in Eisenspeicher- und Eisentransportproteinen die Art und Menge der Metall-Kationen zu bestimmen. „Mit Hilfe solcher Biosensoren sollte es beispielsweise möglich sein, Eisenspeichererkrankungen frühzeitig zu erkennen und effektiv zu therapieren. Aber auch bei der Früherkennung von weiteren schweren Krankheiten, wie der Alzheimererkrankung oder bei Schlaganfällen könnten die Biosensoren hilfreiche Dienste leisten, denn auch bei diesen Erkrankungen wurden bereits veränderte Metallkationenkonzentrationen im Blut gefunden“, sagt Professorin Tanja Weil, die an der Uni Ulm das Institut für Organische Chemie III leitet. Die Chemikerin ist im Projekt für die Funktionalisierung der Sensoroberflächen mit spezifischen Detektormolekülen verantwortlich, um nach dem Schlüssel-Schloss-Prinzip bestimmte Proteine oder DNA-Bestandteile nachweisen zu können.
Der Biosensor basiert auf so genannten nitridischen und oxidischen Halbleiter-Nanostrukturen, die rein optisch angeregt und ausgelesen werden. Durch die Bindung spezifischer Biomoleküle auf der aktiven Zone dieser Nanostrukturen verändern sich Wellenlänge und Intensität der Laser-angeregten Lichtemission. Als optisch aktive Zone für diese Photolumineszenz-Effekte wirkt ein Quantenfilm nahe der Oberfläche der Halbleiter-Strukturen. Ausgelesen werden die Veränderungen in den Lichtemissionen über kompakte Spektrometer, die im ultravioletten und im sichtbaren Spektralbereich ausreichend empfindlich sind.
Ein kompakter Einplatinencomputer, beispielsweise ein Raspberry-Pi, übernimmt im Sensor-Modul die Steuerung der optoelektronischen Komponenten, die spektrale Messung sowie die Erfassung und Auswertung der Daten. Durch die Integration eines WiFi-Moduls, einer Art Funksender im Kleinstformat, soll das Sensor-Modul drahtlos mit einem Server kommunizieren, um über diesen komplexere Analysen durchzuführen und um dort Messdaten zentral zu speichern. Mit Hilfe intelligenter Software und der Möglichkeit, Referenzproben parallel auszulesen, könnte sich der Detektor-Array automatisch kalibrieren und „scharf stellen“. Die hierfür erforderliche intelligente Elektronik entwickelt die Arbeitsgruppe von Professor Klaus Thonke, Leiter der Gruppe Halbleiterphysik am Institut für Quantenmaterie.
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Octet SF3 von Sartorius
Molekulare Bindungskinetik und Affinität mit einer einzigen dynamischen SPR-Injektion
Die Kurvenkrümmung ist der Schlüssel akkurater biomolekularer Wechselwirkungsanalyse
Octet RH16 and RH96 von Sartorius
Effiziente Proteinanalyse im Hochdurchsatz zur Prozessoptimierung und Herstellungskontrolle
Markierungsfreie Protein-Quantifizierung und Charakterisierung von Protein-Protein Wechselwirkungen
Octet R2 / Octet R4 / Octet R8 von Sartorius
Vollgas auf 2, 4 oder 8 Kanälen: Molekulare Wechselwirkungen markierungsfrei in Echtzeit analysieren
Innovative markierungsfreie Echtzeit-Quantifizierung, Bindungskinetik und schnelle Screening-Assays
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.