Ferngesteuerte Mikroschwimmer
Forscher simulieren gelenkte Bewegungen von Bakterien an Oberflächen
Manche Bakterienarten fangen in der Nähe von Oberflächen an zu kreisen, ähnlich wie ein Fahrzeug, dessen Räder auf einer Seite von der Fahrbahn abkommen. Wie eng und in welcher Richtung die Bakterien ihre Kreise ziehen, hängt von der Gleitfähigkeit der Oberfläche ab, wie Jülicher Physiker mithilfe von Computersimulationen ermittelt haben. Die Berechnungen zeigen auch, wie sie sich durch modifizierte Oberflächen auf eine gerade Bahn lenken lassen. Diese Erkenntnis könnte nützlich sein, um verschiedene Bakterienarten für biomedizinische Untersuchungen voneinander zu trennen.

Das Bild illustriert die kreisförmige Bewegung von Bakterien, wie Escherichia coli, in der Nähe einer Oberfläche.
Forschungszentrum Jülich (CC BY 4.0)
Salmonella typhimurium und Escherichia coli sind als Krankheitserreger bekannte Darmbakterien. Sie und verwandte Einzeller werden aufgrund ihrer Form auch "Stäbchenbakterien" genannt. In ihrer Zellwand sind zahlreiche korkenzieherartig geformte Proteinfäden verankert, die Flagellen. Jedes Flagellum besitzt einen eigenen Motor, der es in Drehung versetzt, und die Bakterien ähnlich wie durch eine Schiffsschraube vorwärts bewegt. Doch nicht nur das, daneben rotieren auch die zylinderförmigen Bakterienkörper selbst, und zwar entgegengesetzt zu den geißelförmigen Fortsetzen.
Ursache für die krummen Bahnen in der Nähe der Oberfläche sind Scherkräfte, die durch Geschwindigkeitsunterschiede in der Flüssigkeit zwischen bewegtem Einzeller und ruhender Oberfläche hervorgerufen werden. Theoretische Physiker des Forschungszentrums Jülich haben nun mithilfe mesoskopischer Computersimulationen eine Formel gefunden, mit der sich diese Bewegung der Bakterien exakt vorhersagen lässt. Das Forschungsprojekt wurde von der Volkswagenstiftung finanziell unterstützt.
"Wir konnten zeigen, dass die Bewegung der Mikroschwimmer direkt von der Gleitfähigkeit der Oberfläche abhängt, welche die resultierende Scherkraft maßgeblich beeinflusst", erläutert Prof. Dr. Roland Winkler vom Institutsbereich Theorie der Weichen Materie und Biophysik. "Bei Luft beispielsweise ist die Gleitfähigkeit maximal, bei einer festen Oberfläche wie Glas minimal." Dies erklärt, warum Escherichia coli an festen Oberflächen meist im Uhrzeigersinn schwimmen, an einer Wasser-Luft-Grenze jedoch gegen den Uhrzeigersinn, wie schon vor einigen Jahren beobachtet worden war.
Die Forscher testeten außerdem mit Simulationen, ob sich die Drehrichtung nicht nur vorhersagen, sondern auch beeinflussen lässt. "Gestreifte Oberflächen mit wechselnder Gleitfähigkeit können bewirken, dass sich die Mehrzahl der Mikroschwimmer geradeaus statt im Kreis fortbewegen", berichtet Prof. Gerhard Gompper, Direktor am Institute of Complex Systems und am Institute of Advanced Simulation. "Die erforderliche Präzision bei der Gestaltung der Streifen ist dabei nicht einmal besonders hoch, sodass solche Oberflächen im Labor auch experimentell herstellbar sein sollten, um Bakterien verschiedener Arten oder Größen zu separieren."
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.