Neuer Abbauweg von toxischen Proteinen entdeckt
Proteine - die Komponenten unseres Körpers, die den Großteil der Funktionen in unseren Zellen ausführen, steuern oder organisieren – sind aus Ketten von aneinandergereihten Aminosäuren aufgebaut. Entsprechend ihrer Funktion werden sie wie bei einem Origami in spezifische und komplexe dreidimensionale Strukturen gefaltet. Da Proteinfaltung und Erhaltung dieser Strukturen höchst störanfällig sind, können Proteine falsch gefaltet werden oder sogar Klumpen (Aggregate) bilden. Solch unerwünschter Proteinmüll kann in Zellen toxisch wirken und sogar zum Zelltod führen. Viele neurodegenerative Krankheiten sind dadurch charakterisiert, dass in neuronalen Zellen von entsprechenden Patienten falsch gefaltete Proteine oder Aggregate akkumulieren. Um neue Strategien für eine mögliche Prävention oder Heilung dieser Krankheiten entwickeln zu können, ist es notwendig, genau zu verstehen, wie Zellen ihren toxischen Müll entsorgen.
Wissenschaftler aus dem Labor von Stefan Jentsch am Max-Planck Institut für Biochemie haben jetzt erfolgreich die Bäckerhefe eingesetzt, um neue Müllentsorgungswege zu entdecken. Kefeng Lu, ein Wissenschaftler der Arbeitsgruppe, hat eine neue Klasse von Helferproteinen (CUET Proteine) entdeckt, die in der Hefe und im Menschen vorkommen und zellulären Müll erkennen, der mit dem Proteinetikett Ubiquitin markiert ist. Diese neu entdeckten Helferproteine geleiten den zellulären Abfall durch einen bestimmten Transportweg namens Autophagozytose zu den Lysosomen. Die Max-Planck-Forscher konnten auch zeigen, dass ein toxisches Protein, das der abnormalen Form des Proteins Huntingtin der Chorea Huntington-Patienten sehr ähnlich ist, durch den neu entdeckten Abbauweg effektiv entsorgt wird. Der Abbauweg ist für aggregat-bildende Proteine wie Huntingtin anscheinend hochspezifisch und scheint sogar effektiver als zuvor beschriebene Mechanismen zu sein.
Da der neu gefundene Abbauweg auch in der Hefe aktiv ist, wollen die Forscher jetzt die experimentellen Möglichkeiten dieses Modellorganismus‘ voll ausschöpfen, um den Mechanismus weiter zu untersuchen. Eine detaillierte Analyse ist entscheidend, um zu verstehen, wie Proteinverklumpungen zu Erkrankungen führen und um neue Konzepte zur Vorbeugung zu entwickeln.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
K. Lu, I. Psakhye and S. Jentsch Autophagic clearance of polyQ proteins mediated by the conserved CUET protein family Cell, July 17, 2014. DOI:
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.