Krebsgene kapern sich Verstärkung

25.06.2014 - Deutschland

Medulloblastome sind die häufigsten bösartigen Hirntumoren bei Kindern. Im Gegensatz zu den meisten anderen Krebsarten weisen sie besonders wenige Mutationen in wachstumsfördernden Genen auf. Es war daher nicht klar, warum sie ein derart aggressives Wachstumsverhalten an den Tag legen. Wissenschaftler aus dem Deutschen Krebsforschungszentrum fanden nun gemeinsam mit einem internationalen Kollegenteam heraus, dass bei einer besonders bösartigen Gruppe der Medulloblastome die Krebsgene meist nicht verändert sind, sondern stärker oder schwächer abgelesen werden. Verantwortlich dafür sind bislang unbekannte Steuermechanismen: So kapert sich etwa ein Krebsgen fremde Verstärker.

Medulloblastome sind die häufigsten Hirntumoren bei Kindern. Sie werden in vier Gruppen eingeteilt, die sich in der Aggressivität der Erkrankung stark unterscheiden. Besonders häufig treten die sehr schwierig zu behandelnden Tumoren der Gruppen 3 und 4 auf. „Gerade bei diesen beiden Tumorgruppen waren bisher kaum charakteristische Erbgutveränderungen bekannt, die das Tumorwachstum antreiben und sich als Zielstruktur für die Entwicklung Medikamenten eignen“, sagt Prof. Dr. Peter Lichter aus dem Deutschen Krebsforschungszentrum, Koordinator des PedBrain-Tumor Forschungsverbunds. Als Teil des Internationalen Krebskonsortiums ICGC analysieren die Forscher dieses Verbunds systematisch alle Erbgutveränderungen kindlicher Hirntumoren, um dabei neue Zielstrukturen für schonendere Behandlungen zu entdecken.

Dr. Paul Northcott und die Kollegen des ersten Teams nahmen 137 Fälle der aggressiveren Gruppe 3- und 4-Medulloblastome genau unter die Lupe und kamen dabei einem bisher bei Hirntumoren noch nie beobachteten Phänomen auf die Spur. In vielen Tumorgenomen sind große DNA-Bereiche verloren gegangen, verdoppelt oder in ihrer Richtung verkehrt. Bei allen untersuchten Tumoren hatten diese strukturellen Defekte trotz ihrer Verschiedenartigkeit eine identische Konsequenz: Eines der beiden Krebsgene GFI1 oder GFI1B, die im gesunden Gehirngewebe nicht aktiv sind, wird in diesen Tumoren abgelesen und trägt damit zur Krebsentstehung bei.

Die PedBrain-Forscher entdeckten auch die Ursache des seltsamen Phänomens: Die verschiedenartigen Strukturveränderungen „verschoben“ das Krebsgen aus seiner angestammten, inaktiven Umgebung im Erbgut in die Nähe so genannter „Verstärkerelemente“ (Enhancer), die zur Aktivierung von Genen beitragen. Die Forscher wiesen daraufhin an Mäusen nach, dass aktiviertes GFI1B tatsächlich Hirntumoren entstehen lässt – ein Beleg dafür, dass die „gekaperten“ Gen-Verstärker tatsächlich die Krebsentstehung fördern.

„Es ist gut möglich, dass gekaperte Enhancer als Aktivierungsmechanismen auch bei vielen anderen Krebsarten eine Rolle spielen. Sie sind jedoch nur durch extrem sorgfältige Analyse des Erbguts zu entdecken und deshalb leicht zu übersehen“, sagt Prof. Dr. Stefan Pfister, Molekulargenetiker am DKFZ und zugleich Kinderarzt am Universitätsklinikum Heidelberg.

Die Forscher freuen sich besonders, dass ihre Arbeit direkt dazu beitragen kann, Kinder mit Hirntumoren besser zu behandeln: Substanzen, die die Wirkungsweise der Krebsgene GFI1 und GFI1B blockieren, werden bereits präklinisch erprobt und könnten nun auch das Wachstum der aggressiven Gruppe 3- und 4-Medulloblastome aufhalten.

Das zweite Team konzentrierte seine Untersuchungen auf die so genannte „epigenetische“ Steuerung der Genaktivität durch chemische Markierungen des Erbguts. Dafür verglichen die Forscher die DNA-Methylierungsmuster des kompletten Erbguts von 42 Medulloblastomen mit dem von gesundem Kontrollgewebe.

Als ausschlaggebend für die Genaktivität galt bisher, wie stark die Startregion (Promoter), die jedem Gen vorgeschaltet ist, mit Methylgruppen besetzt ist. Volker Hovestadt und seine Kollegen entdeckten nun erstmals, dass auch veränderte Methylgruppen innerhalb der Gene selbst besondere Bedeutung für deren Aktivierung haben. Zahlreiche Gene der Tumorzellen wiesen – im Vergleich mit ihren gesunden Pendants – einen auffälligen Mangel an Methylgruppen auf. Gleichzeitig wurden sie deutlich häufiger abgelesen als in gesunden Zellen, ein sicheres Zeichen dafür, dass das Fehlen der Methylgruppen sich auch tatsächlich funktionell auswirkt.

„Steuerung der Genaktivität durch Methyl-Markierung innerhalb des Gens wurden bisher nirgendwo anders gefunden, zumindest nicht in so ausgeprägter Form: Bei manchen der Tumoren fanden wir an die tausend Gene, die schwächer methyliert waren als ihre Pendants in gesunden Zellen“, sagt Peter Lichter.

Der PedBrain-Koordinator fasst die Bedeutung der Ergebnisse beider Nature-Arbeiten zusammen: „Die Ergebnisse zeigen die außerordentliche Bedeutung der epigenetischen Genregulation beim Medulloblastom, die auch bekannte Krebsgene einschließt. Außerdem haben wir mit den Krebsgenen GFI1 oder GFI1B eine Achillesferse der besonders gefährlichen Medulloblastome entdeckt. Damit kennen wir zum ersten Mal eine molekulare Schwachstelle der Tumoren, gegen die zielgerichtete Medikamente entwickelt werden können.“

Das Internationale Krebsgenom-Konsortium (ICGC), ein Verbund von Wissenschaftlern aus inzwischen 16 Ländern, hat zum Ziel, die charakteristischen Genom- und Epigenom-Veränderungen bei allen wichtigen Krebserkrankungen zu erfassen. Deutschland beteiligt sich mit „PedBrain-Tumor“, einem Projekt zur Analyse von kindlichen Hirntumoren (Medulloblastome und pilozytische Astrozytome). Im Rahmen von PedBrain-Tumor sollen 500 Gewebeproben von kindlichen Hirntumoren analysiert werden. Dazu kommt die gleiche Anzahl von gesunden Proben derselben Patienten, um Veränderungen als krebsspezifisch erkennen zu können.

Im PedBrain-Tumor-Verbund forschen Wissenschaftler aus sieben Institutionen unter der Federführung von Peter Lichter (DKFZ) und Roland Eils (DKFZ, Universität Heidelberg). In Heidelberg sind neben dem Deutschen Krebsforschungszentrum das Nationale Centrum für Tumorerkrankungen (NCT), die Universität, das Universitätsklinikum sowie das European Molecular Biology Laboratory (EMBL) beteiligt. Außerdem übernehmen Wissenschaftler vom Universitätsklinikum Düsseldorf und vom Max-Planck-Institut für Molekulare Genetik in Berlin Aufgaben im Verbundprojekt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...