Proteinteam stellt molekulare Fässer her

Forscher zeigen, dass zwei Proteinmaschinen bei der Ausbildung von Fassstrukturen in den Mitochondrien zusammenarbeiten

06.08.2013 - Deutschland

Die Arbeitsgruppen von Prof. Dr. Nikolaus Pfanner, Privatdozent Dr. Nils Wiedemann und Privatdozent Dr. Thomas Becker der Albert-Ludwigs-Universität Freiburg haben gemeinsam mit weiteren Kolleginnen und Kollegen nachgewiesen, wie molekulare Protein-Fässer in der äußeren Membran der Mitochondrien, den Kraftwerken der Zellen, entstehen. Dabei haben sie herausgefunden, dass zwei Proteinmaschinen auf unerwartete Weise kooperieren.

© Thomas Becker (BBA-2008)

Die Proteinmaschinen TOM und SAM sind über Tom22 miteinander verbunden und arbeiten in der Reifung von Proteinen mit beta-Fassstruktur zusammen. Modifiziert nach Becker et al., 2008; Biochim. Biophys. Acta 1777, 447-563

Mitochondrien sind für das Überleben der Zelle unerlässlich. Sie stellen zum Beispiel die Energie für den Zellstoffwechsel bereit. Mitochondrien sind von zwei Membranen umgeben. Die äußere Membran enthält charakteristische Proteine mit einem fassähnlichen Aufbau, der beta-Fassstruktur. Sie durchspannen die Membran und sind für den Transport von Proteinen und Stoffwechselprodukten in die Mitochondrien entscheidend. Die Proteine werden im Zytosol der Zelle als Vorstufen hergestellt und erhalten erst innerhalb des Mitochondriums ihre reife Fassstruktur. Dazu werden sie durch die Pore des Proteinkomplexes TOM, der Translokase der Außenmembran der Mitochondrien, importiert und zu einer zweiten Proteinmaschine der Außenmembran, der Sortierungs- und Assemblierungsmaschine SAM, transportiert. Der SAM-Komplex schließlich baut die Proteine in die Membran ein. Die einzelnen Schritte, die zur Ausbildung der beta-Fassstruktur führen, und der Transfer des Vorstufenproteins von TOM zu SAM waren bisher unverstanden.

Im Rahmen einer Kooperation zwischen dem Sonderforschungsbereich 746 „Funktionelle Spezifität durch Kopplung und Modifikation von Proteinen“, dem Exzellenzcluster BIOSS Center for Biological Signalling Studies und der Spemann Graduiertenschule für Biologie und Medizin analysierten die Forscher die Bildung der beta-Fassstruktur. Das Team um Nils Wiedemann zeigte, dass die beta-Fassstruktur am SAM-Komplex entsteht. Der Doktorand Jian Qiu entdeckte, dass das Rezeptorprotein Tom22 eine zentrale Rolle in diesem Prozess spielt. Dies ist überraschend, da man bisher davon ausging, dass TOM und SAM unabhängige Proteinmaschinen sind. Ergebnisse der Arbeitsgruppe von Thomas Becker zeigten aber, dass beide im direkten Kontakt miteinander stehen. Tom22 verbindet beide Komplexe, wie die Doktorandin Lena-Sophie Wenz herausfand. Fehlt Tom22, führt dies zum Verlust der molekularen Brücke zwischen TOM und SAM – was die Bildung von beta-Fassstrukturen erheblich beeinträchtigt. Die Ergebnisse dieser Studie zeigen, dass die direkte Übergabe des importierten Proteins vom TOM-Komplex zum SAM-Komplex eine effiziente Bildung mitochondrialer beta-Fassstrukturen erlaubt.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...