Molekularer Turbolader
Die Tumorzellen des schwarzen Hautkrebses und viele andere Zellen bewegen sich mithilfe so genannter Lamellipodien fort. „Dabei handelt es sich um sehr flache und breite Zellfortsätze“, berichtet Prof. Dr. Klemens Rottner vom Institut für Genetik der Universität Bonn, Hauptautor der Studie. Als „Motor“ für diese Fortsätze dienen Aktinfilamente, die Bestandteil des so genannten Zellskeletts sind. Im Muskel des Menschen verbinden sich diese fadenförmigen Aktin-Proteine mit Myosinfäden, die Ruderbewegungen ähnlich aneinander vorbeigleiten und Kraft erzeugen. „In Lamellipodien erzeugen die Verbindungen mit Myosin Widerlager für die Vorwärtsbewegung, wohingegen die eigentliche Bewegung durch das Wachstum der Filamente an der Spitze dieser Zellfortsätze entsteht“, erklärt Dr. Jennifer Block, die als Erstautorin im Team von Prof. Rottner an der Studie beteiligt war und nun in der Industrie arbeitet.
Forscher beobachten Aktinfilamente beim Wachsen
Beim Wachstum von Aktinfilamenten fügen sich einzelne Proteinbausteine zu einer langen Kette zusammen. Dieser Prozess ist strikt reguliert und kann heutzutage direkt beobachtet werden. Den Startschuss dazu gibt die sogenannte „Nukleation“, die nachfolgende Verlängerung wird als „Elongation“ bezeichnet. Wie verschiedene Regulatoren diese unterschiedlichen Phasen des Aktinfilamentwachstums molekular steuern, untersuchten die Bonner Wissenschaftler mit Hilfe einer speziellen Form der Fluoreszenzmikroskopie. „In unseren Experimenten konnten wir erstmals dabei zusehen, wie Nukleation und Elongation von Aktinfilamenten molekular gekoppelt sind“, erläutert Prof. Rottner. „Daraus konnten wir zurück schließen, was passieren würde, wenn wir diese Faktoren bei der Zellbewegung inaktivieren würden.“
Wissenschaftler schalteten bestimmte Gene „stumm“
Bislang ging die Wissenschaft davon aus, dass die Ausbildung der Fortsätze, mit denen sich die Zellen fortbewegen, hauptsächlich durch den sogenannten Arp2/3-Proteinkomplex gesteuert wird. „Wir konnten nun aber zeigen, dass auch Formine eine wichtige Rolle in Lamellipodien spielen können, und mit diesem Komplex kooperieren, indem sie die Verlängerung der von ihm erzeugten Aktinfilamente deutlich steigern“, berichtet Prof. Rottner. Als Beweis schalteten die Wissenschaftler das Gen für die Bildung eines bestimmten, in Lamellipodien vorkommenden Formins stumm. „Daraufhin zeigte sich, dass die gebildeten Lamellipodien sich langsamer vorwärts bewegten und die Effizienz der Zellwanderung insgesamt deutlich eingeschränkt war“, ergänzt Dr. Block. Dieses Ergebnis untermauert nun auch die direkte Bedeutung von Forminen bei Zellbewegungsprozessen.
Erkenntnisse sind von medizinischer Relevanz
An der Studie waren neben den Wissenschaftlern der Universität Bonn unter anderem auch Forscher des Instituts für Biophysikalische Chemie der Medizinischen Hochschule Hannover um Prof. Dr. Jan Faix und des Max-Planck-Instituts für Molekulare Physiologie in Dortmund um Dr. Matthias Geyer beteiligt. Bei den Untersuchungen handelt es sich um Grundlagenforschung mit medizinischer Relevanz. „Wenn wir einmal in der Lage sind, die Zellwanderung auf molekularer Ebene vollständig zu verstehen, können wir vielleicht auch die Mobilität von Tumorzellen hemmen und damit die Ausbildung von Metastasen verhindern“, sagt Prof. Rottner. Bis dahin sei es aber noch ein langer Weg.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.