Ein kleines Energiesparwunder: das Chaperon‐Protein Hsp90

Scherenbewegung ganz ohne ATP-Verbrauch

18.01.2012 - Deutschland

Eine bestimmte Gruppe von Proteinen, die sogenannten Chaperone, helfen anderen Proteinen, sich in die richtige Form zu falten. Bisher nahm man an, dass die Chaperone für die dafür nötigen Konformationsänderungen Energie in Form des universellen, zellulären Energieträgers ATP benötigen. Ein Team von Biophysikern um Thorsten Hugel, Professor an der Technischen Universität München (TUM) und Mitglied des Exzellenzclusters Nanosystems Initiative Munich (NIM), konnte nun zeigen, dass die Scherenbewegung des Chaperons Hsp90 kein ATP verbraucht sondern durch thermische Fluktuation angetrieben wird. Über ihre Ergebnisse berichtet das Fachjournal PNAS.

ATP ist der Hauptenergieträger der meisten Organismen. Die Verbindung wird durch sogenannte ATPasen gespalten, um mit der dabei frei werdenden Energie  beispielsweise Muskeln zu bewegen oder Nährstoffe zu transportieren. Das in großen Mengen in den Zellen vorkommende Chaperon-Protein Hsp90 besitzt in jeder seiner beiden Untereinheiten solch eine ATPase. Bisher gingen die Fachleute daher davon aus, dass die Bewegung und die Konformationsänderungen des HSP90 unmittelbar mit der Bindung oder Hydrolyse von ATP zusammenhängen.

Um diese Annahme näher zu untersuchen, haben der Biophysiker Thorsten Hugel und seine Mitarbeiter einen besonderen Versuchsaufbau entwickelt: Mit Hilfe von drei unterschiedlichen Lasern und einer äußerst empfindlichen Kamera konnten die Wissenschaftler die Bindung von ATP und die Konformationsänderungen des Hsp90-Proteins gleichzeitig beobachten. Entgegen ihrer Erwartung zeigten die Experimente, dass Bindung und Hydrolyse von ATP nicht direkt mit den umfassenden Konformationsänderungen des Chaperon-Proteins Hsp90 zusammenhängen. Hsp90 ist vielmehr ein sehr variables System, das durch thermische Fluktuationen angetrieben wird.

„Thermische Fluktuationen, das sind zufällige Änderungen der Struktur des Proteins – man kann sie sich als Zusammenstöße mit Wassermolekülen in der Umgebung vorstellen, die sich bei den Temperaturen in einem lebenden Organismus recht heftig bewegen,“ erklärt Thorsten Hugel. „Indem es diese Zusammenstöße nutzt, um zwischen den verschiedenen Konformationen hin und her zu schalten, spart das Hsp90 wertvolles ATP.“ Doch welche Aufgabe hat dann die ATPase im Hsp90-Chaperon? Die Wissenschaftler vermuten, dass Co-Chaperone oder auch Substratproteine das System so verändern, dass ATP-Bindung oder Hydrolyse eine wesentliche Aufgabe übernehmen.

Mit dem neu entwickelten Versuchsaufbau ist es jetzt möglich, das sehr komplexe System eingehender zu untersuchen und diese wichtige Frage zu lösen. Die Münchner Biophysiker eröffnen damit eine neue Sichtweise auf die Energieumwandlung in molekularen Maschinen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!