Krebs automatisch erkennen

Spektrale Krebsmarker: Wegbereiter neuer Technik

21.12.2010 - Deutschland

Die Diagnostik von Krankheiten wie z.B. Krebs basiert heute noch wie vor Jahrzehnten auf der Beurteilung von Zellen oder Geweben. Die Treffsicherheit der Diagnose hängt neben objektivierbaren Parametern mitunter auch von subjektiven Faktoren ab, etwa der persönlichen Erfahrung des Untersuchers oder der Gewebsbeschaffenheit. Mehr Sicherheit verspricht die Unterstützung durch automatische Verfahren, die auf der Analyse des Spektrums von Gewebeproben und Zellen basieren. Einer der großen Wegbereiter dieser Technik ist Prof. Dr. Max Diem vom "Department of Chemistry and Chemical Biology" an der Northeastern University in Boston, USA. Er wird das akademische Jahr 2010/11 als Gastprofessor am Protein Research Department der Ruhr-Universität Bochum (Sprecher Prof. Dr. Klaus Gerwert) verbringen.

Darmkrebs: Automatische Diagnose und Prognose

Die histologische oder zytologische Untersuchung, die auch zum Screening zum Beispiel gegen Gebärmutterhalskrebs genutzt wird, basiert auf der mikroskopischen Inspektion von angefärbten Zellen oder Gewebeschnitten. Dabei nutzt man morphologische und Gewebestruktur-basierte Kriterien zur Diagnose. Automatisierte Techniken, die bei der Erkennung von Gewebsmustern helfen, könnten die Diagnose erleichtern oder bestimmte Merkmale validieren. Im Center for Vibrational Microscopy(CVM) und im Proteinforschungszentrum PURE (Sprecher: Prof. Dr. Klaus Gerwert) suchen Forscher daher spektrale Krebsmarker. Prof. Diem wird eng mit den RUB-Forschern zusammenarbeiten, insbesondere bei der Etablierung spektraler Methoden zur Erkennung, Diagnose und Prognose von Darmkrebs (Kolonkarzinom). Das CVM und PURE arbeiten auch eng zusammen mit Prof. Dr. Wolff Schmiegel und Prof. Dr. Andrea Tannapfel (RUB-Universitätsklinik Bergmannsheil und Knappschaftskrankenhaus Bochum-Langendreer), die ihre medizinische und diagnostische Expertise und nicht zuletzt Gewebeproben einbringen.

Schnappschuss der Zellzusammensetzung

Im letzten Jahrzehnt hat Prof. Diems Forschungsgruppe in Boston bahnbrechende Arbeiten zur Anwendung der Infrarot-Spektroskopie und Infrarot-Spektralabbildung (Infrared Spectral Imaging) für die medizinische Diagnostik durchgeführt. Die spektralen Messungen, gekoppelt mit computerbasierten Methoden der multivariablen Statistik, wurden dabei zu Erkrankungszuständen von Zellen und Geweben in Bezug gesetzt. Das funktioniert so: Bestrahlt man eine Zelle oder ein Gewebe mit Infrarotstrahlung, werden bestimmte Frequenzbereiche absorbiert. Das führt zur einer Schwingungsanregung der Molekülbindungen, die man im gemessenen Spektrum sehen kann. Die dazu notwendigen Frequenzen erlauben Rückschlüsse auf Eigenschaften des bestrahlten Gewebes. "Das Infrarotspektrum einer Zelle oder eines Gewebepixels beschreibt einen Schnappschuss der gesamten biochemischen Zusammensetzung der Zelle oder eines Gewebeschnitts", verdeutlicht Prof. Gerwert. "Diese Zusammensetzung ist bei normalen und krankhaften Zuständen verschieden." Da die biochemische Zusammensetzung von einem Spektrometer gemessen und mittels Computer ausgewertet wird, wird die Arbeit der Pathologen erheblich unterstützt, ähnlich wie das Fahrerassistenzpaket beim Autofahren.

Gemeinsam Datenbanken erstellen

Prof. Diems "Labor für Spektrale Diagnose" (LSpD) an der Northeastern University ist mit über sieben Millionen US-Dollar vom Amerikanischen Gesundheitsministerium für dieses Projekt gefördert worden. In den letzten vier Jahren wurden die Ergebnisse dieser Forschung in 40 wissenschaftlichen Veröffentlichungen und Buchkapiteln publiziert. Eine vorklinische Studie zur Früherkennung von Mundkrebs mit der spektralen Zytologie läuft derzeit am LSpD. Darüber hinaus werden in Zusammenarbeit mit der Pathologiegruppe am Tufts University Medical Center in Boston neue Methoden erforscht, um Mund-, Gebärmutterhals- und Lungenkrebs automatisch zu erkennen. Weiterhin wurden Methoden zur Prognose von Brustkrebs entwickelt für Patientinnen, die Metastasen in den Lymphknoten der Achselhöhlen haben. Im November 2010 unterzeichneten die Northeastern University einen Linzenzvertrag mit einem neu gegründeten Unternehmen, um die vom LSpD entwickelte Technologie zu vermarkten. Die Zusammenarbeit zwischen dem LSpD und dem Lehrstuhl für Biophysik an der RUB wird die Forschung auf diesem Gebiet weiter vorantreiben und spektrale Datenbanken und Korrelationen zwischen spektraler Information, Histopathologie und biologischen Krebs-Markern erstellen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller