Bausteine für Innovationen in der Biomedizin: rekombinante Spinnenseidenproteine
Prof. Dr. Th. Scheibel
Seidenpartikel für den Transport medizinischer Wirkstoffe
Partikel aus Spinnenseidenproteinen sind in hervorragender Weise dafür geeignet, Wirkstoffe auf schonende und effektive Weise langanhaltend in einem Organismus freizusetzen. Entscheidend ist dabei der Wirkstoffbeladungs- und Freisetzungsprozess der Partikel, den das Forschungsteam um Scheibel im Labormaßstab analysieren konnte: Zunächst lagern sich die Wirkstoffmoleküle an der Oberfläche eines Seidenpartikels an. Anschließend diffundieren sie in das Innere des Partikels. Sobald die Proteinpartikel mit Körperflüssigkeiten in Kontakt kommen, werden die Wirkstoffmoleküle von der Oberfläche aus langsam und kontinuierlich wieder an die Umgebung abgegeben.
Es bietet sich an, diesen Prozess für die Wirkstoffformulierung zu nutzen. Denn biologisch abbaubare Kapseln aus Spinnenseide können gewährleisten, dass dem Blutkreislauf eine definierte Dosis eines Wirkstoffs zugeführt wird - stetig und über einen längeren Zeitraum hinweg. Die Seidenpartikel selbst werden innerhalb weniger Wochen vom Organismus biologisch abgebaut. Dabei entstehen Aminosäuren, die vom Körper wiederum für den Stoffwechsel verwendet werden können.
Seidenfilme für die künstliche Herstellung von Zellgewebe
Extrem dünne Filme/Folien aus Seidenproteinen bilden einen weiteren Forschungsschwerpunkt. Sie eignen sich unter anderem als Basismaterial für biochemische Sensoren, die winzige Mengen einer organischen Substanz aufspüren können. Von herausragendem Interesse für die Biomedizin ist die Möglichkeit, Seidenfilme für die künstliche Herstellung von Zellgewebe, das sog. "Tissue Engineering", einzusetzen. Denn auf den Seidenoberflächen lassen sich gewebebildende Zellen ansiedeln, die sich kontinuierlich vermehren und zusammenhängende Strukturen bilden. Es kann sich dabei um ganz unterschiedliche Arten von Zellen handeln - beispielsweise um Zellgewebe, das dem natürlichen Knochenmaterial sehr ähnlich ist, oder auch um Stammzellen, die sich in unterschiedliche Richtungen hin ausdifferenzieren können.
Optimierung von Implantaten für die Chirurgie
Zusammen mit dem Universitätsklinikum Würzburg arbeitet die Forschergruppe um Scheibel seit kurzem an Seidenfilmbeschichtungen für Brustimplantate aus Silikon. Dabei hat der Seidenfilm die Funktion, im Körper eine Barriere zwischen dem Silikon und dem umgebenden Gewebe zu bilden. Das Implantat gewinnt dadurch Oberflächeneigenschaften, die weitaus besser verträglich sind als die des Silkons. So bleiben den Patientinnen Schmerzen und erneute Operationen erspart.
Kontrollierte Eigenschaftsprofile
Bei allen Anwendungen sind die Eigenschaften der Seidenproteine von zentraler Bedeutung: Dazu zählen insbesondere molekulare Mikrostrukturen, das Verhalten der Seidenmaterialien unter verschiedenen Drücken und Temperaturen, ihre chemische Reaktionsfreudigkeit, ihre Gas- und Wasserdurchlässigkeit und - was in der Medizin besonders wichtig ist - ihr biologisches Abbauverhalten. Unter Laborbedingungen können diese Eigenschaften präzise gesteuert werden. Das Bayreuther Forschungsteam um Scheibel ist in der Lage, jeden einzelnen Schritt bei der Herstellung von Seidenmaterialien so zu kontrollieren, dass am Ende ein Eigenschaftsprofil herauskommt, das die beabsichtigten Anwendungen unterstützt.
Biomaterialien - eine Alternative zu synthetischen Kunststoffen
"Es ist beeindruckend, wie vielseitig Spinnenseidenproteine in der Biomedizin, der Pharmazie oder der Textilindustrie eingesetzt werden können," erklärt Scheibel. "In den letzten Jahren ist es uns gelungen, die Eigenschaften von seidenbasierten Biomaterialien wie z.B. Filme oder Partikel mit immer größerer Präzision zu kontrollieren; und zwar so, dass sie für die jeweils angestrebten Anwendungen funktionsoptimiert sind. Deshalb sind Biomaterialien, die auf der Basis von Spinnenseidenproteinen hergestellt werden, eine leistungsstarke Alternative zu bisherigen synthetischen Kunststoffen. Die Natur weist uns auch in dieser Hinsicht den Weg zu innovativen Produkten."
Originalveröffentlichung: Kristina Spiess, Andreas Lammel, Thomas Scheibel; "Recombinant Spider Silk Proteins for Applications in Biomaterials"; Macromolecular Bioscience (2010), Vol. 10, Issue 9, pp. 998-1007