Die Anziehungskraft des Goldes - Elektrische Spannung reguliert Bindung von DNA
Die Wissenschaftler um Hermann Gaub, Professor für Biophysik an der LMU München und Mitglied des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM), nutzen dazu die Elektrochemie. Über die Spannung, die an der Goldelektrode anliegt, können die Forscher per Knopfdruck entscheiden, ob die DNA mit den Goldatomen eine chemische Bindung eingeht oder nicht: Bei negativer Spannung bindet das Molekül, bei positiver Spannung bindet es nicht.
Für ihre Versuche nehmen die Biophysiker mit der Spitze eines Rasterkraftmikroskopes (AFM) kurze doppelsträngige DNA-Moleküle auf und berühren damit an der gewünschten Stelle die Goldelektrode. Vorsichtig wird anschließend die Spitze wieder von deren Oberfläche abgehoben. Um zu sehen, wie stark die Bindung zwischen DNA und Gold ist, messen die Wissenschaftler, wie viel Kraft notwendig ist, um das Molekül abzulösen. Diese Kräfte sind mit weniger als einem Nano-Newton (nN=10-9 Newton) äußerst klein und nur mit Hilfe des AFM nachweisbar. So ist beispielsweise die Haftkraft eines Spinnenbeines an einer Wand Bionik-Forschern zufolge rund drei Millionen Mal höher.
Bei ihren Experimenten stellten die Münchner Nanotechnologen fest, dass das von Natur aus negativ geladene DNA-Molekül erstaunlicherweise an eine ebenfalls negativ geladene Elektrode bindet. Von einer positiv geladenen Elektrode wird es jedoch abgestoßen. Die Erklärung liefern die Magnesium-Ionen, die in der Versuchslösung enthalten sind. Sie erleichtern durch ihre zweifach positive Ladung als eine Art Vermittler der DNA den Zugang zur Elektrode. Zudem können die DNA-Moleküle nur an reduzierte Goldatome binden, wozu ebenfalls eine negative Spannung anliegen muss. Um den Bindemechanismus aufzuklären, setzten die Wissenschaftler statt eines DNA-Stückes nur die einzelnen Nukleotide Thymidin und Adenosin ein, beides Bausteine des Erbmoleküls.
Thymidin besitzt als einziges Nukleotid keine primäre Amin-Gruppe (-NH2). Während Adenosin fest am Gold haften blieb, konnte Thymidin aber ohne Kraftaufwand wieder von der Oberfläche abgehoben werden. Diese und andere Beobachtungen beweisen, dass die Nukleotide mit ihrer primären Aminogruppe an die Goldatome binden. Welche Auswirkungen die neue Methode in der Nanotechnologie haben könnte, zeigt die korrespondierende Autorin der Arbeit, Dr. Ann Fornof, auf: „Die Möglichkeit, einzelne DNA-Stücke extern kontrollierbar auf eine Oberfläche zu binden, liefert ein neues Werkzeug um gezielt Nanostrukturen aufzubauen oder DNA zu immobilisieren. Es ist gut vorstellbar, dass diese elektrisch kontrollierte Adhäsion für eine Reihe von Anwendungen nützlich sein wird: vom Einsatz in Biosensoren bis zur Positionierung von größeren Konstrukten wie DNA-Origami.
Originalveröffentlichung: Matthias Erdmann, Ralf David, Ann R. Fornof und Hermann E. Gaub; "Electrically induced bonding of DNA to gold”; Nature Chemistry; published online: July 5, 2010
Meistgelesene News
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Octet SF3 von Sartorius
Molekulare Bindungskinetik und Affinität mit einer einzigen dynamischen SPR-Injektion
Die Kurvenkrümmung ist der Schlüssel akkurater biomolekularer Wechselwirkungsanalyse
Octet RH16 and RH96 von Sartorius
Effiziente Proteinanalyse im Hochdurchsatz zur Prozessoptimierung und Herstellungskontrolle
Markierungsfreie Protein-Quantifizierung und Charakterisierung von Protein-Protein Wechselwirkungen
Octet R2 / Octet R4 / Octet R8 von Sartorius
Vollgas auf 2, 4 oder 8 Kanälen: Molekulare Wechselwirkungen markierungsfrei in Echtzeit analysieren
Innovative markierungsfreie Echtzeit-Quantifizierung, Bindungskinetik und schnelle Screening-Assays
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.