Supercomputer ermöglicht neue Einblicke in Schwingungen des Wassers

Gelöste Biomoleküle stören die Choreographie

24.06.2010 - Deutschland

Mit der Terahertz-Spektroskopie haben RUB-Chemiker kürzlich den überraschend weitreichenden Einfluss von in Wasser gelösten Biomolekülen auf den "Tanz" der sie umgebenden Wassermoleküle nachgewiesen. Jetzt gelang es ihnen mit aufwändigen Simulationen im Supercomputer, diese Choreographie im Detail zu erklären. Im virtuellen Labor gewannen die Forscher um Prof. Dr. Dominik Marx (Theoretische Chemie) und Prof. Dr. Martina Havenith-Newen (Physikalische Chemie II) Hinweise auf den Mechanismus, mit dem gelöste Biomoleküle die Wassermoleküle in ihrer Umgebung über Entfernungen bis zu mehreren Molekülabmessungen beeinflussen können. Entscheidend sind die Biomolekül-Wasser-Grenzflächen.

Flüssiges Wasser reagiert, wie andere Flüssigkeiten auch, mit charakteristischen Schwingungen auf Anregungen durch Wellen eines weiten Spektralbereichs. Bei Frequenzen, die denen des infraroten Lichts entsprechen, kann man die Schwingungen innerhalb der einzelnen Moleküle beobachten. "Bei niedrigeren Frequenzen, im Terahertz-Bereich, der im elektromagnetischen Spektrum zwischen den Frequenzen des infraroten Lichts und der Mikrowellenstrahlung liegt, finden viel komplexere Bewegungen statt, bei denen sich ganze Wassermoleküle relativ zueinander bewegen", erklärt Terahertz-Spezialistin Prof. Havenith-Newen. "Diese Bewegungen beinhalten insbesondere das Schließen und Aufbrechen des dreidimensionalen Wasserstoffbrücken-Netzwerks, welches die Wassermoleküle aneinander bindet und für die außergewöhnlichen Eigenschaften von Wasser verantwortlich ist." Diese Beobachtungen sind erst seit kurzem durch die Entwicklung neuartiger Laserstrahlungsquellen möglich. Studien an der RUB führten zu Entdeckung eines unerwartet weitreichenden Einflusses von im Wasser gelösten biologisch relevanten Molekülen wie Zucker oder Proteinen, dem sog. "Terahertz-Tanz" des Wassers. Rund um das Molekül herrscht Ordnung in der Schrittfolge: "Während sich Wassermoleküle für sich genommen wie Diskotänzer bewegen, führen sie in der Nähe von Biomolekülen ein Menuett auf", sagt Prof. Havenith-Newen. Allerdings war bislang unklar, wie dieses unerwartete Phänomen zu erklären ist.

Die zugrunde liegenden Schwingungen zwischen Wassermolekülen sind äußerst komplex. Es war daher bislang nicht möglich, den experimentellen Befund durch einen fundierten Mechanismus zu erklären. Gemeinsam führten die Forscher der beiden Lehrstühle daher Molekulardynamik-Simulationen von Wasser durch, welche allerdings nicht wie auf diesem Gebiet üblich auf einem empirischen Modell zur Beschreibung der Wechselwirkung zwischen den Molekülen beruhen, sondern mit Hilfe von ab initio-Simulationen beschrieben werden. Erstmals wurden Simulationen in einer Größenordnung durchgeführt, welche statistisch signifikante Aussagen über die vergleichsweise langsamen Schwingungen zwischen den Wassermolekülen zulassen. Ermöglicht wurden diese immens aufwändigen Berechnungen durch die Unterstützung des Leibniz Rechenzentrums in Garching bei München, welches die erforderliche Rechenzeit auf dem nationalen Supercomputer HLRB2 zur Verfügung stellte. Durch neu entwickelte Analyseverfahren konnte nachgewiesen werden, wie genau die THz-Schwingungen des Wassers durch korrelierte Bewegungen vieler Wassermoleküle zu beschreiben sind: sozusagen durch Wassertröpfchen im Wasser selbst. "Damit haben wir die‚Choreographie des reinen Wassers' bei niedrigen Frequenzen aufgedeckt", sagt Prof. Marx.

Wird nun ein Stoff, etwa ein Protein, in Wasser gelöst, so "stört" dieser die Choreographie des Wassers an seiner Grenzfläche. Damit lassen sich die experimentellen Befunde der THz-Spektroskopie qualitativ verstehen. "Die korrelierten Schwingungen von Wassermolekülen bei THz-Frequenzen weisen ein neuartiges Verhalten auf, das sich grundlegend von den bereits seit langem bekannten Infrarot-Schwingungen der chemischen Bindungen innerhalb der Wassermoleküle unterscheidet", erklärt Prof. Marx. Wie die Studie zeigt, werden letztere lediglich durch lokalisierte Schwingungen in einzelnen Molekülen sowie direkter Nachbarn beschrieben. Ganz anders hingegen die Choreographie des THz-Tanzes: Hierbei bewegen sich viele, wenn auch nur indirekt über Wasserstoffbrücken verbundene Moleküle, gemeinsam in einer konzertierten Weise im Raum und Zeit. Es sind nun die Veränderungen dieser Korrelation, hervorgerufen durch Biomolekül-Wasser-Grenzflächen, die von der THz-Spektroskopie detektiert und technologisch ausgenutzt werden.

Die interdisziplinäre Zusammenarbeit fand im Rahmen des Reseach Departments "Interfacial Systems Chemistry" der RUB statt und wurde durch die Humboldt Stiftung gefördert. Die Ergebnisse wurden erst Ende Mai auf dem Leopoldina-Symposium "The Complexity Connecting Biomolecular Structure and Solvation Dynamics" an der RUB erstmals der Fachöffentlichkeit vorgestellt.

Originalveröffentlichung: Matthias Heydena, Jian Sunb, Stefan Funknera, Gerald Mathias, Harald Forbert, Martina Havenitha, Dominik Marx, "Dissecting the THz spectrum of liquid water from first principles via correlations in time and space."; PNAS 2010.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Systec H-Series

Systec H-Series von Systec

Sichere, reproduzierbare und validierbare Sterilisation von Flüssigkeiten, Festkörpern und Abfällen

Kompakte Autoklaven mit 65-1580 Liter Nutzraum, flexibel erweiterbar für verschiedene Applikationen

Laborautoklaven
Whatman™ folded filter papers

Whatman™ folded filter papers von Cytiva

Whatman-Faltfilterpapiere

Praktische gefaltete Formate beschleunigen Ihre Probenvorbereitung

Filterpapiere
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren