Hitzeschutz für Proteine - Wie Bakterien sich gegen Hitze schützen
Das Bakterium Escherichia coli ist nicht nur im menschlichen Darm zu Hause, es ist auch eines der wichtigsten „Arbeitspferde“ im Labor. Eine Vielzahl pharmazeutisch wichtiger Substanzen werden inzwischen biotechnologisch durch gentechnisch veränderte E. coli-Bakterien hergestellt, beispielsweise das Insulin. Während in der chemischen Produktion die Faustregel gilt, dass eine um zehn Grad höhere Temperatur eine Verdoppelung der Reaktionsgeschwindigkeit zur Folge hat, sind die Verhältnisse in der Biotechnologie viel komplizierter. Zwar steigt die Produktivität von E. coli bei höheren Temperaturen zunächst, oberhalb von 42° Celsius gerät der Organismus jedoch zunehmend unter Stress und produziert weniger brauchbare Proteine. Temperaturen über 46° Celsius sind für Wildtyp-E. coli bereits tödlich.
Dem Team um Jeannette Winter, Biochemikerin und Leiterin der Emmy-Noether-Gruppe „Oxidative Stress“ im Department Chemie der TU München, gelang es nun, E. coli-Bakterien durch Evolution über mehrere Jahre hinweg stufenweise eine sehr viel höhere Hitzeresistenz anzuzüchten. Ihre Bakterien wachsen mittlerweile bei Temperaturen von 48,5° Celsius. Hier scheint aber für den Organismus E. coli eine natürliche Grenze zu existieren. Höhere Wachstumstemperaturen erreichten die Forscher nicht.
Im Vergleich zu einer bei 37° Celsius aus den gleichen Vorfahren gezüchteten Kontrollpopulation enthielten die hitzeresistenten Bakterien das als Hitzeschutzprotein bekannte GroE schon bei normalen Bedingungen in 16-fach höherer Konzentration. Allerdings hat die Hitzeresistenz ihren Preis: Da der Organismus durch den andauernden Stress Veränderungen im Erbgut trägt und sehr viel Energie in die Produktion von Hitzeschutzproteinen steckt, wächst er insgesamt langsamer als seine Vorfahren.
Dahinter steht ein komplexer Prozess: Jedes Protein besteht aus einer langen Kette von Aminosäuren. Erst durch kunstvolle Faltung zu einer dreidimensionalen Struktur wird daraus das funktionierende Protein. Dabei helfen Chaperone genannte Proteine, wie das GroE. Es stabilisiert Proteine, die bei höheren Temperaturen instabil werden und hilft, durch Mutationen instabiler gewordene Proteine trotzdem in ihre funktionale Form zu bringen. „Die Fähigkeit der hitzeresistenten Bakterien, wesentlich höhere Konzentrationen an GroE produzieren zu können, ist ein entscheidender Faktor für die Überlebensfähigkeit unter diesen Bedingungen“, sagt Jeannette Winter.
Über die evolutionsbiologischen Aspekte hinaus liefert die Untersuchung der Arbeitsgruppe wertvolle Hinweise darauf, wie sich Organismen an veränderte Umweltbedingungen anpassen. „Ein besseres Verständnis der Arbeit der Chaperone könnte auch neue Wege für die gezielte Züchtung von Organismen für spezielle Aufgaben öffnen“, sagt Jeannette Winter. „Das sind nicht nur Bakterien zur Produktion von pharmazeutisch interessanten Proteinen sondern beispielsweise auch Bakterien, die unter harten Umweltbedingungen Umweltgifte abbauen können.“
Die Arbeiten wurden gefördert aus Mitteln des Exzellenzclusters Center for Integrated Protein Science Munich, dem Elitenetzwerk Bayern, dem Fonds der chemischen Industrie sowie der Deutschen Forschungsgemeinschaft (DFG; SFB 594 und Emmy-Noether Programm).
Originalveröffentlichung: Birgit Rudolph, Katharina M. Gebendorfer, Johannes Buchner, and Jeannette Winter; "Evolution of Escherichia coli for Growth at High Temperatures"; Journal of Biological Chemistry, 2010 285: 19029-19034.