Molekularer Schalter für die Proteinproduktion entdeckt
LMU-Forscherteam zeigt, wie Bakterien ihre Proteinbiosynthese durch den Zellstoffwechsel steuern – möglicherweise ein Ansatzpunkt für neue Therapien
Eine besondere Herausforderung für die Zelle bei der Proteinbiosynthese ist der Einbau des Aminosäurebausteins Prolin in das entstehende Eiweißmolekül. Aufgrund seiner starren Struktur verursacht Prolin häufig Blockaden an den Ribosomen, den „Proteinfabriken“ der Zelle. Um diese Blockaden zu überwinden, setzen alle Lebewesen auf einen bestimmten Faktor, der in Bakterien EF-P genannt wird und die Ribosomen beim Einbau von Prolin unterstützt. Wie die Wissenschaftlerinnen und Wissenschaftler nun entdeckten, besitzen einige Bakterien ein mit EF-P eng verwandtes Protein namens EfpL als zusätzliches Werkzeug für die Proteinbiosynthese. Im Gegensatz zu EF-P reagiert dieses Protein jedoch auf den Stoffwechsel der Zelle und passt die Proteinsynthese durch spezifische chemische Modifikationen an die jeweiligen Erfordernisse an.
„EfpL bietet uns eine einzigartige Möglichkeit, die flexible Anpassung der bakteriellen Proteinproduktion an Umweltbedingungen zu verstehen“, erklärt Alina Sieber, die Erstautorin der Studie. „Diese Art der Regulation war bisher unbekannt, und wir haben erstmals gezeigt, dass der Stoffwechsel der Zelle die Aktivität von EfpL beeinflusst“, ergänzt Lassak. Besonders interessant sei, dass unter den Bakterien, die EfpL nutzen, viele humanpathogene Keime zu finden sind, darunter Salmonellen und Escherichia coli genauso wie die Erreger von Cholera und der Pest.
Die Autoren vermuten, dass die präzise Steuerung der Proteinproduktion durch EfpL eine effektive Anpassung an wechselnde Lebensräume ist – etwa, wenn Bakterien aus der Umwelt in einen menschlichen Wirt übergehen. Die Hemmung von EfpL könnte daher ein vielversprechender Ansatz sein, um das Wachstum solcher Erreger zu unterdrücken und so neue therapeutische Strategien zu entwickeln.
Originalveröffentlichung
Alina Sieber, Marina Parr, Julian von Ehr, Karthikeyan Dhamotharan, Pavel Kielkowski, Tess Brewer, Anna Schäpers, Ralph Krafczyk, Fei Qi, Andreas Schlundt, Dmitrij Frishman, Jürgen Lassak; "EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences"; Nature Communications, Volume 15, 2024-12-2
Meistgelesene News
Originalveröffentlichung
Alina Sieber, Marina Parr, Julian von Ehr, Karthikeyan Dhamotharan, Pavel Kielkowski, Tess Brewer, Anna Schäpers, Ralph Krafczyk, Fei Qi, Andreas Schlundt, Dmitrij Frishman, Jürgen Lassak; "EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences"; Nature Communications, Volume 15, 2024-12-2
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.