KI hilft bei der Erkennung antibiotikaresistenter Bakterien

Ein erster wichtiger Schritt zur zukünftigen Integration von GPT-4 in die klinische Diagnostik

24.10.2024
Computer-generated image

Symbolbild

Forschende der Universität Zürich (UZH) haben zum ersten Mal künstliche Intelligenz (KI) zur Identifizierung von antibiotikaresistenten Bakterien eingesetzt. Das Team um Adrian Egli, UZH-Professor am Institut für Medizinische Mikrobiologie hat untersucht, wie GPT-4 – ein leistungsstarkes KI-Modell von OpenAI – zur Analyse von Antibiotikaresistenzen verwendet werden kann.

UZH

Kirby-Bauer-Disk-Diffusionstest von Darmbakterien und Antibiotika getränkte Papierblättchen: Die Antibiotika-Konzentration nimmt mit zunehmender Entfernung ab. Je näher Bakterien an das Testblättchen heranwachsen, desto resistenter sind sie (rote Kreise).

Die Forschenden nutzten KI, um einen gängigen Labortest zu interpretieren: den sogenannten Kirby-Bauer-Disk-Diffusionstest. Dieser Test zeigt den Ärztinnen und Ärzten, welche Antibiotika bei einer bestimmten bakteriellen Infektion wirksam sind und welche nicht. Basierend auf GPT-4 schufen die Wissenschaftler den «EUCAST-GPT-Experten», der den strengen Richtlinien des EUCAST, des European Committee on Antimicrobial Susceptibility Testing, zur Interpretation von Resistenzmechanismen folgt. Mit den neuesten Daten und Expertenregeln ausgestattet, wurde das System an Hunderten von Bakterien getestet. Und tatsächlich: Es half, Resistenzen gegen lebenswichtige Antibiotika zu erkennen.

Menschliche Experten sind genauer – aber KI ist schneller

«Antibiotikaresistenzen sind weltweit eine wachsende Bedrohung. Wir benötigen dringend schnellere und zuverlässigere Werkzeuge, um sie zu erkennen», sagt Studienleiter Egli. «Unsere Forschungsarbeit ist der erste Schritt, um KI in der Routinediagnostik einzusetzen, damit Ärztinnen und Ärzte resistente Bakterien schneller identifizieren können».

Zwar erzielte das KI-System gute Resultate bei der Erkennung bestimmter Resistenztypen, war aber nicht perfekt. Während es gut darin war, Bakterien zu erkennen, die gegen bestimmte Antibiotika resistent sind, markierte es manchmal Mikroben als resistent, obwohl sie es nicht waren. Und das könnte zu möglichen Verzögerungen bei der Behandlung führen. Im Vergleich waren menschliche Experten genauer in der Bestimmung von Resistenzen. Dennoch könnte das KI-System dabei helfen, den Diagnoseprozess zu standardisieren und zu beschleunigen.

KI-Werkzeug unterstützt medizinische Fachpersonen

Trotz der Einschränkungen hebt die Studie das transformative Potenzial hervor, das KI im Gesundheitswesen hat. Durch die standardisierte Interpretation komplexer Diagnosetests könnte KI letztendlich dazu beitragen, die Variabilität und Subjektivität manueller Auswertungen zu verringern und so die Ergebnisse für die Patienten zu verbessern.

Adrian Egli betont, dass weitere Tests und Verbesserungen erforderlich seien, bevor dieses KI-Tool in Krankenhäusern eingesetzt werden könne. «Unsere Studie ist ein wichtiger erster Schritt, aber wir sind noch weit davon entfernt, menschliche Expertise zu ersetzen. Vielmehr sehen wir KI als ein ergänzendes Werkzeug, das Mikrobiologinnen und -biologen in ihrer Arbeit unterstützen kann», so Egli.

Globale Entwicklung der Antibiotikaresistenz eindämmen

Gemäss der Studie hat KI das Potenzial, die weltweiten Anstrengungen zur Eindämmung der zunehmenden Antibiotikaresistenzen zu unterstützen. KI-basierte Diagnostiksysteme könnten zukünftig Labore überall auf der Welt dabei unterstützen, arzneimittelresistente Bakterieninfektionen schneller und präziser zu erkennen – und so die Wirksamkeit bestehender Antibiotika zu erhalten.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Digitalisierung im Labor

Die Themenwelt Digitalisierung im Labor stellt Innovationen und Trends von digitalen Datensystemen (ELN, LIMS) über Laborroboter und vernetzte Geräte (IoT) bis zu KI und Machine Learning vor.

2 Produkte
1 White Paper
2 Broschüren
Themenwelt anzeigen
Themenwelt Digitalisierung im Labor

Themenwelt Digitalisierung im Labor

Die Themenwelt Digitalisierung im Labor stellt Innovationen und Trends von digitalen Datensystemen (ELN, LIMS) über Laborroboter und vernetzte Geräte (IoT) bis zu KI und Machine Learning vor.

2 Produkte
1 White Paper
2 Broschüren