Töte nicht die Boten-RNA!
Erste mRNA-stabilisierende Substanz könnte neue Wege bei der Entwicklung innovativer mRNA-Therapeutika eröffnen
Boten-RNA transportiert die wertvollste zelluläre Information vom Zellkern ins Zytoplasma - den chemischen Bauplan zur Herstellung von Proteinen. Sobald die mRNA jedoch ihre Botschaft an die proteinproduzierenden Fabriken im Zytoplasma übermittelt hat, wird sie nicht mehr benötigt und durch Exonukleasen abgebaut. Je nachdem wie lange die mRNA im Zytoplasma verbleibt, wird mehr oder weniger von einem Protein produziert - sei es gesundheitsfördernd oder krankheitsverursachend. Die Regulierung des mRNA-Levels ist eine der vielversprechendsten Strategien auf dem aufstrebenden Gebiet der RNA-basierten Therapeutika.
Wie schützt man den Boten?
Das Team um Peter 't Hart hat nun eine neue Strategie zur Verlängerung der mRNA-Lebensdauer entwickelt, mit der die mRNA vor ihrem Abbau geschützt werden soll. Interessanterweise ist mRNA von Natur aus nicht besonders stabil und würde ohne molekulare Schutzkappen an den beiden mRNA-Enden vorzeitig abgebaut werden. An ihrem sogenannten 3'-Ende ist die mRNA mit einem Polyadenin-Schwanz mit einer durchschnittlichen Länge von 200 Nukleotiden ausgestattet. Aber auch dieser Schutz hält nicht lange an: In einem aktiven Prozess, der sogenannten Deadenylierung, wird ein Adenin nach dem anderen von der mRNA entfernt und damit ihre Stabilität reduziert. Das führt dazu, dass nach nur 7 Stunden Verweilzeit im Zytoplasma bereits die Hälfte der mRNA abgebaut ist. Eingeleitet wird dieser Prozess durch die Rekrutierung der Ziel-mRNA mit Hilfe von RNA-bindenden Proteinen an den Proteinkomplex CCR4-NOT. Und genau hier setzt die neue Strategie der Forschenden an. Basierend auf der Struktur eines mRNA-bindenden Proteins haben sie ein großes Peptid entwickelt, das die Interaktion des CCR4-NOT-Komplexes mit der Ziel-mRNA blockieren kann. Große Peptide können jedoch nur schwerlich zelluläre Barrieren überwinden, was sie aber tun müssen, wenn sie als Arzneimittel eingesetzt werden sollen. Indem die Chemiker herausgefunden haben, wie der Inhibitor an sein Ziel bindet, konnten sie die Bioverfügbarkeit des Peptids mit weiteren chemischen Modifikationen verbessern.
Potentiell gesundheitsfördernde Proteine stabilisieren
Die Forschenden konnten ihre Arbeit sogar noch einen Schritt weiterführen und die Wirkung ihrer Strategie in lebenden Zellen nachweisen. So stabilisierte die Zugabe des Peptids die Polyadenin-Schwänze von zwei potenziell gesundheitsfördernden Proteinen: einem Tumorsuppressor, der eine positive Rolle in Krebserkrankungen spielen könnte, und einem Kernrezeptor, dessen erhöhte Level bei der Behandlung verschiedener altersbedingter Krankheiten helfen könnten. „Das Konzept, gesundheitsfördernde mRNAs durch das Verhindern ihrer Deadenylierung zu stabilisieren, blieb bisher unerforscht. Die Stabilität fast aller mRNAs wird durch die Deadenylierung reguliert. Basierend auf dieser Strategie könnten neue Medikamente zur Behandlung von Krankheiten entwickelt werden, die mit bisher bekannten therapeutischen Ansätzen nicht bekämpft werden können“, sagt 't Hart. Derzeit arbeitet seine Gruppe an weiteren Hemmstoffen gegen andere Komponenten der Deadenylierungsmaschinerie