Schlüsselmechanismen für die Regeneration von Nervenzellen identifiziert
Wie Gliazellen mithilfe epigenetischer Modifikationen zu Neuronen umprogrammiert werden können
neurologische Erkrankungen wie Trauma, Schlaganfall, Epilepsie und verschiedene neurodegenerative Erkrankungen führen häufig zu einem dauerhaften Verlust von Nervenzellen, was zu erheblichen Beeinträchtigungen der Gehirnfunktion führt. Die derzeitigen Behandlungsmöglichkeiten sind begrenzt, weil es immer noch eine Herausforderung ist, verloren gegangene Nervenzellen zu regenerieren. Die neuronale Reprogrammierung, ein komplexes Verfahren, bei dem ein Zelltyp in einen anderen umgewandelt wird, bietet eine vielversprechende Strategie. In Zellkultur und in lebenden Organismen können Gliazellen – also nicht neuronale Zellen des zentralen Nervensystems – erfolgreich in funktionelle Neuronen umgewandelt werden. Die an dieser Umprogrammierung beteiligten Prozesse sind jedoch komplex und noch nicht ausreichend verstanden. Diese Komplexität stellt eine Herausforderung, aber auch eine Motivation für Forschende auf dem Gebiet der Neurowissenschaften und der regenerativen Medizin dar.
Zwei Teams, eines unter der Leitung von Magdalena Götz, Inhaberin des Lehrstuhls für Physiologische Genomik an der LMU, Direktorin des Instituts für Stammzellforschung bei Helmholtz Munich und Mitglied im Exzellenzcluster SyNergy, und das andere unter der Leitung von Boyan Bonev am Helmholtz Pioneer Campus, haben die molekularen Mechanismen untersucht, mit denen Gliazellen mithilfe eines einzigen Transkriptionsfaktors in Neuronen umgewandelt werden. Dabei konzentrierten sich die Forschenden auf kleine chemische Modifikationen des Erbguts, sogenannte epigenetische Veränderungen. Das Epigenom trägt dazu bei, zu kontrollieren, welche Gene in verschiedenen Zellen zu verschiedenen Zeitpunkten aktiv sind. Die Teams konnten nun zum ersten Mal zeigen, wie koordiniert die Umstrukturierung des Epigenoms durch einen einzigen Transkriptionsfaktor gesteuert wird.
Mit Hilfe neuartiger Methoden der Epigenomprofilierung deckten die Forschenden auf, dass eine posttranslationale Modifikation des reprogrammierenden neurogenen Transkriptionsfaktors Neurogenin2 die epigenetische Umstrukturierung und die neuronalen Reprogrammierung maßgeblich beeinflusst. Allerdings genügt der Transkriptionsfaktor allein nicht, um die Gliazellen umzuprogrammieren: Die Forschenden identifizierten ein neuartiges Protein, den Transkriptionsregulator YingYang1, als Schlüsselfaktor für diesem Prozess. YingYang1 ist notwendig, um das Erbgut für die Umprogrammierung zu öffnen, und interagiert dafür mit dem Transkriptionsfaktor. „Das Protein Ying Yang 1 ist entscheidend, um die Umwandlung von Astrozyten in Neuronen zu erreichen", erklärt Götz. "Diese Erkenntnisse sind wichtig, um die Reprogrammierung von Gliazellen zu Neuronen zu verstehen und zu verbessern, und bringen uns damit therapeutischen Lösungen näher.“
Originalveröffentlichung
Allwyn Pereira, Jeisimhan Diwakar, Giacomo Masserdotti, Sude Beşkardeş, Tatiana Simon, Younju So, Lucía Martín-Loarte, Franziska Bergemann, Lakshmy Vasan, Tamas Schauer, Anna Danese, Riccardo Bocchi, Maria Colomé-Tatché, Carol Schuurmans, Anna Philpott, Tobias Straub, Boyan Bonev, Magdalena Götz; "Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1"; Nature Neuroscience, 2024-7-2
Meistgelesene News
Originalveröffentlichung
Allwyn Pereira, Jeisimhan Diwakar, Giacomo Masserdotti, Sude Beşkardeş, Tatiana Simon, Younju So, Lucía Martín-Loarte, Franziska Bergemann, Lakshmy Vasan, Tamas Schauer, Anna Danese, Riccardo Bocchi, Maria Colomé-Tatché, Carol Schuurmans, Anna Philpott, Tobias Straub, Boyan Bonev, Magdalena Götz; "Direct neuronal reprogramming of mouse astrocytes is associated with multiscale epigenome remodeling and requires Yy1"; Nature Neuroscience, 2024-7-2
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.