Wiederaufladbare Nanotaschenlampe
Nachleucht-Lumineszenz-Bildgebung verfolgt zellbasierte Mikroroboter in Echtzeit
© Wiley-VCH
Makrophagen sind wichtige Immunzellen, die Bakterien „fressen“, aber z.B. auch an der Beseitigung von Krebszellen beteiligt sind. Zudem können sie Wirkstoffe aufnehmen und in Zellen, z.B. Tumorzellen, einschleusen. Nach einer Aufnahme magnetischer Nanopartikel lassen sie sich gezielt durch einen Magneten innerhalb des Körpers z.B. zu einem Tumor lotsen. So könnten Makrophagen-„Mikroroboter“ die Nebenwirkungen von Chemotherapien verringern.
Es wäre nützlich, wenn sich Mikroroboter räumlich und zeitlich innerhalb des Körpers verfolgen ließen. Fluoreszenz-Bildgebungsverfahren kämen in Frage, benötigen jedoch eine andauernde externe Bestrahlung. Dies verursacht ein hohes Hintergrundrauschen aufgrund der Autofluoreszenz vieler Biomoleküle. Die begrenzte Eindringtiefe des meist benötigten sichtbaren und UV-Lichts in Gewebe limitiert zudem die Detektionstiefe. Eine Alternative könnten Sonden sein, die vor der Untersuchung bestrahlt werden und nachleuchten. Anorganische Nanopartikel mit lang anhaltendem Nachleuchten bergen jedoch das Risiko, dass Schwermetall-Ionen austreten; organische leuchten nur kurz und können nicht erneut angeregt werden.
Das Team vom Shenzhen Institute of Advanced Technology der Chinesischen Akademie der Wissenschaften hat jetzt in Zusammenarbeit mit der Universität Koç (Türkei) eine „wiederaufladbare Nanotaschenlampe“ entwickelt. Sie besteht aus Nanopartikeln aus Vorstufen eines organischen Leuchtmoleküls, Photosensibilisatoren (ein hydrophobes Analogon von Methylenblau) und Polyethylenglykol mit zelleindringenden Peptiden. Der Photosensibilisator absorbiert NIR-Licht und regt dann Sauerstoffmoleküle der Umgebung an. Dieser hochreaktive Singulett-Sauerstoff bindet an die Vorstufe und bildet eine Dioxetan-Gruppe, d.h. einen Vierring aus zwei Sauerstoff- und zwei Kohlenstoffatomen. Dem schließt sich eine Umlagerung an, bei der das entstandene Leuchtmolekül gespalten wird und seine Überschussenergie durch Leuchten abgibt. Nach der Erstbestrahlung leuchteten die Nanotaschenlampen zehn Tage lang.
Danach können sie per „Fernzugriff“ durch äußerliche Bestrahlung mit NIR-Licht, das tief ins Gewebe eindringen kann, erneut zum Leuchten gebracht werden – mehrfach. Voraussetzung: Die Mengenverhältnisse von Photosensibilisator zu Leuchtmolekül-Vorstufe werden so gewählt, dass pro Bestrahlung nur ein Teil der Vorstufen aktiviert wird. So werden Langzeit-Bildgebungsverfahren möglich.
Das chinesische Team um Pengfei Zhang, Ping Gong und Lintao Cai führte in Zusammenarbeit mit dem türkischen Team um Safacan Kolemen die neuen Nanotaschenlampen in Makrophagen-basierte Mikroroboter ein und konnte deren durch Magnete geleiteten Weg im Körper von Mäusen anhand der Lumineszenz-Signale in Echtzeit verfolgen.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Gongcheng Ma, Musa Dirak, Zhongke Liu, Daoyong Jiang, Yue Wang, Chunbai Xiang, Yuding Zhang, Yuan Luo, Ping Gong, Lintao Cai, Safacan Kolemen, Pengfei Zhang; "Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell‐Based Microrobots"; Angewandte Chemie International Edition, 2024-3-25
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
DynaPro Plate Reader III von Wyatt Technology
Screening von Biopharmazeutika und anderen Proteinen mit automatisierter dynamischer Lichtstreuung
Hochdurchsatz-DLS/SLS-Messungen von Lead Discovery bis Qualitätskontrolle
Eclipse von Wyatt Technology
FFF-MALS System zur Trennung und Charakterisierung von Makromolekülen und Nanopartikeln
Neuestes FFF-MALS-System entwickelt für höchste Benutzerfreundlichkeit, Robustheit und Datenqualität
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.