Forscherinnen entwickeln künstliche Bausteine des Lebens
Erstmals künstliche Nukleotide, die Bausteine der DNA, mit mehreren zusätzlichen Eigenschaften im Labor hergestellt
Stephanie Kath-Schorr
Künstliche Nukleinsäuren unterscheiden sich im Aufbau zu ihren Originalen. Diese Veränderungen haben Auswirkungen auf Stabilität und Funktion der Nukleinsäuren. "Unsere Threonukleinsäure ist stabiler als die natürlich vorkommenden Nukleinsäuren DNA und RNA, was viele Vorteile für künftige therapeutische Nutzung bringt“ sagt Professorin Dr. Stephanie Kath-Schorr. Für die Studie wurde der 5-Fach Zucker Desoxyribose, der das Rückgrat in DNA bildet, durch einen 4-Fach Zucker ausgetauscht. Zusätzlich wurde die Anzahl der Nukleobasen von vier auf sechs erhöht. Durch den Austausch des Zuckers wird die TNA nicht von den zelleigenen Abbauenzymen erkannt. Dies war bisher ein Problem bei Nukleinsäure-basierten Therapeutika, da synthetisch hergestellte RNA, die in eine Zelle geschleust wird, schnell abgebaut wird und ihre Wirkung verliert. Die Einbringung von TNAs in Zellen, die unentdeckt bleiben, könnte die Wirkung nun länger aufrechterhalten. „Außerdem ermöglicht das eingebaute unnatürliche Basenpaar alternative Bindungsmöglichkeiten an Zielmoleküle in der Zelle", ergänzt Hannah Depmeier, Erstautorin der Studie. Kath-Schorr ist sich sicher, dass solch eine Funktion insbesondere Anwendung in der Entwicklung neuer Aptamere, kurzen DNA- oder RNA-Stücken genutzt werden kann, die zur gezielten Steuerung zellulärer Mechanismen verwendet werden können. Auch für den gezielten Transport von Medikamenten zu bestimmten Organen im Körper (targeted drug delivery) sowie in der Diagnostik könnten TNAs angewendet werden und etwa bei der Erkennung von Virusproteinen oder Krankheitsmarkern nützlich sein.