Neue Möglichkeit krankmachende Proteine in den Abbau zu zwingen
Forschende entwickeln neuen Krebsprotein-Killer und entdecken dabei eine neue Ligase für PROTACs
Viele der heutigen Medikamente sind kleine einfache Moleküle. Sie wirken meist, indem sie die Aktivität von Proteinen beeinflussen, die an krankhaft entgleisten Prozessen beteiligt sind; und genau das macht ihre Entwicklung extrem kompliziert. Denn für jedes Protein muss ein hochangepasstes Molekül entwickelt werden, das wie ein Hochsicherheitsschlüssel in das dazugehörige Schloss – das aktive Zentrum des Proteins - passt. Proteine, die aktiv an krankhaft entgleisten Prozessen beteiligt sind, bilden aber nur einen Bruchteil der krankheitsrelevanten Proteine. Aus diesen Gründen gelten viele Proteine immer noch als therapeutisch unangreifbar, als „undruggable“.
Krebsprotein Ras – doch nicht unangreifbar?
Ein Großteil der unangreifbaren Proteine sind interessante Ziele in der Krebsforschung. Das vielleicht Prominenteste unter ihnen ist das kleine Ras Protein. Eine einzige kleine Veränderung in Ras reicht aus, den Schalter für Zellwachstum unumkehrbar auf „an“ umzulegen - mit gravierenden Folgen: Die Zellen vermehren sich rasant und unkontrolliert. So findet man in fast jedem vierten Tumor Ras-Mutationen. In einer bahnbrechenden Arbeit entwickelte ein Team von Dortmunder MPI-Forschenden um Herbert Waldmann bereits 2013 eine neue Strategie, das als bisher unangreifbar geltende Ras doch angreifbar zu machen: Anstatt es direkt anzuvisieren, manipulierten die Forschenden mit einem speziell entwickelten Molekül gegen das Hilfsprotein PDEδ den Transport und somit die Aktivität von Ras in der Zelle. Den Forschenden gelang es jedoch nicht, die krebstreibende Aktivität von Ras vollständig zu stoppen.
Zweiarmiges Molekül heftet Krebsprotein Stempel zum Abbau an
Nur zwei Jahre nach der Arbeit von Waldmann entwickelten amerikanische Forschende eine neue hoffnungsvolle Wirkstoffklasse zur Ausschaltung von krankhaften Proteinen: die sogenannten PROTACs (Proteolysis-Targeting Chimeras). Diese kapern wirksam die körpereigene Protein-Müllabfuhr. Das aus zwei Armen bestehende große Moleküle packt auf einer Seite das Zielprotein und auf der anderen die E3-Ligase des Protein-Abfallsystems. Diese fordert das Abfallsystem auf, das krankhafte Protein zu entsorgen. „Dies ist eine geniale, wirklich herausragende wissenschaftliche Leistung.“ sagt Waldmann.“ Die PROTACs müssen nur mit hoher Selektivität an ihr Ziel binden, anstatt auf komplizierte Weise die enzymatische Aktivität des Zielproteins zu hemmen. Das Prinzip ist theoretisch auf alle Proteine anwendbar, auch auf unseren Ras-Transporter PDEδ, wie wir in unserer aktuellen Arbeit erfolgreich zeigen.“
Zufallsfund eröffnet neue Möglichkeiten
Die Chemiker Waldmann und Winter bauten mit ihren Teams einen neuen PROTAC bestehend aus dem von ihnen entwickelten PDEδ Inhibitor. Diesen verlinkten sie an ein gut untersuchtes Molekül, das bekanntermaßen ein weiteres Abbausystem alarmiert, das auch größere Zellbestandtteile verarbeiten kann. „Unsere Screens haben jedoch offenbart, dass unser PROTAC gar nicht die sogenannte Makroautophagie aktiviert, sondern das Protein-Abbausystem“ sagt Georg Winter. „Besonders interessant dabei ist, dass unser PROTAC eine neue Ligase bindet, die für PROTACs bisher nicht zugänglich war.“
Denn aktuell werden fast ausschließlich zwei E3-Ligasen als Bindungstellen für PROTACs genutzt. In unseren Körper existieren jedoch mehr als 600 E3-Ligasen. Und einige davon sind nur in ganz bestimmten Geweben vorhanden. „Mit gewebespezifischen Ligasen könnte man den Ort der Aktivität der Wirkstoffe gezielt steuern“, blickt Waldmann in die Zukunft. „Unsere eher zufällige Entdeckung ermöglicht die weitere biologisch und medizinal-chemische Erforschung der gefundenen Ligase. So könnte dazu beigetragen werden, das Spektrum pharmazeutisch nutzbarer PROTACs zu erweitern und eines Tages gezielt Proteine in bestimmten Geweben abzubauen.“
Originalveröffentlichung
Gang Xue, Jianing Xie, Matthias Hinterndorfer, Marko Cigler, Lara Dötsch, Hana Imrichova, Philipp Lampe, Xiufen Cheng, Soheila Rezaei Adariani, Georg E. Winter, Herbert Waldmann; "Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype"; Nature Communications, Volume 14, 2023-11-30