Immunzellen wandern entlang selbst erzeugter Gradienten
Forschende zeigen wie Immunzellen ihr Ziel erreichen: Ergebnisse könnten neue Ansätze liefern, um Infektionen und Tumore gezielter zu bekämpfen
© Jonna Alanko, ISTA/Science Immunology
Keime oder Toxine können überall im menschlichen Körper auftreten. Zum Glück, verfügen wir über ein Immunsystem – unser ganz persönlicher Schutzschild – das mit ausgeklügelten Methoden mit diesen Gefahren zurechtkommt. Ein wichtiger Aspekt unserer Immunreaktion ist zum Beispiel die koordinierte kollektive Bewegung von Immunzellen während Infektionen und Entzündungen. Aber woher wissen unsere Immunzellen, welchen Weg sie einschlagen sollen?
Ein Team von Wissenschafter:innen aus den Forschungsgruppen von Michael Sixt und Edouard Hannezo am Institute of Science and Technology Austria (ISTA) gingen genau dieser Frage nach. In ihrer Studie, die im Fachjournal Science Immunology publiziert wurde, zeigen uns die Forscher:innen neueste Einblicke, wie Immunzellen gemeinsam durch komplexe Umgebungen wandern.
Dendritische Zellen — Die Übermittler
Dendritische Zellen (DCs) sind einer der Schlüsselakteure unserer Immunantwort. Sie agieren als Vermittler zwischen der angeborenen Immunantwort – der ersten Reaktion unseres Körpers auf einen Eindringling – und der adaptiven Immunantwort – einer verzögerten Reaktion, die auf ganz bestimmte Keime abzielt und Erinnerungen zur Abwehr künftiger Infektionen schafft. Wie Detektive spüren DCs unerwünschte Eindringlinge im Gewebe auf und werden aktiviert, sobald sie den Infektionsherd gefunden haben. Danach wandern sie sofort zu den Lymphknoten, wo sie eine Art Schlachtplan übergeben und die nächsten Schritte der Kaskade einleiten.
Ihre Wanderung zu den Lymphknoten wird durch Chemokine – kleine Signalproteine, die von den Lymphknoten freigesetzt werden – gesteuert, die einen Gradienten bilden. Bisher ging man davon aus, dass DCs und andere Immunzellen auf diesen externen Gradienten reagieren und sich in Richtung einer höheren Konzentration bewegen. Neue Untersuchungen am ISTA stellen diese Vorstellung nun in Frage.
Ein Rezeptor, zwei Funktionen
Die Wissenschafter:innen nahmen den Rezeptor „CCR7“ genauer unter die Lupe. Bei CCR7 handelt es sich um eine Oberflächenstruktur, die auf aktivierten DCs zu finden ist. Die wesentliche Funktion des Rezeptors ist die Bindung des lymphknotenspezifischen Moleküls „CCL19“, was die nächsten Schritte der Immunreaktion auslöst. „Wir konnten feststellen, dass CCR7 nicht nur CCL19 wahrnimmt, sondern auch aktiv zur Gestaltung der Verteilung von Chemokinkonzentrationen beiträgt“, so Jonna Alanko, ehemalige Postdoc aus dem Labor von Michael Sixt.
Mithilfe verschiedener experimenteller Techniken wiesen die Forscher:innen nach, dass sich DCs bei ihrer Wanderung Chemokine über den CCR7-Rezeptor einverleiben. Dies führt zu einer lokalen Reduzierung der Chemokinkonzentration. Da aber nun weniger Signalmoleküle vorhanden sind, wandern sie weiter in höhere Chemokinkonzentrationen. Diese Doppelfunktion ermöglicht es den Immunzellen, eine eigene Orientierungshilfe zu erzeugen, um ihre kollektive Wanderung effektiver zu steuern.
Bewegung hängt von der Zellpopulation ab
Um diesen Mechanismus besser zu verstehen, schlossen sich Alanko und ihre Kolleg:innen mit den theoretischen Physikern Edouard Hannezo und Mehmet Can Ucar zusammen, die ebenfalls am ISTA forschen. Mit ihrem Fachwissen über Zellbewegung und -dynamik erstellten sie Computersimulationen, mit denen Alankos Experimente reproduziert werden konnten. Anhand dieser Simulationen konnten die Forscher:innen feststellen, dass die Bewegung der dendritischen Zellen nicht nur von ihrer individuellen Reaktion auf das Chemokin abhängt, sondern auch von der Dichte der Zellpopulation. „Das war eine einfache, aber nicht triviale Vorhersage: Je mehr Zellen es gibt, desto stärker ist der Gradient, den sie erzeugen. Es zeigt deutlich die kollektive Natur dieses Phänomens!“ betont Can Ucar betont.
Zusätzlich fanden die Forscher:innen heraus, dass T-Zellen – Immunzellen, die schädliche Keime zerstören – ebenfalls von diesem dynamischem Wechselspiel profitieren und beweglicher werden. „Laufende Forschungsprojekten werden uns hoffentlich mehr Aufschluss über dieses neuartige Interaktionsprinzip zwischen Zellpopulationen geben“, so der Physiker.
Verbesserung der Immunabwehr
Die Erkenntnisse sind ein Schritt in eine neue Richtung bei der Frage, wie sich Zellen in unserem Körper bewegen. Anders als bisher angenommen, reagieren Immunzellen nicht nur auf Chemokine, sondern spielen eine wesentlich aktivere Rolle, indem sie die Signale aufnehmen und damit aktiv ihre Umgebung gestalten – eine elegante Strategie zur Steuerung ihrer eigenen Bewegung sowie der anderer Immunzellen.
Die Ergebnisse dieser Studie geben uns neue Einblicke, wie die Immunreaktionen in unserem Körper koordiniert wird. Durch das präsentierte Modell könnten neue Strategien entwickeln werden, die dabei helfen, dass Immunzellen besser an bestimmten Stellen gelangen, wie z.B. an Tumorzellen oder andere Infektionsherde.