Neues Experiment enträtselt, wie sich blitzschnelle Harnstoff-Umwandlung abspielt

Schlüssel zur Entstehung des Lebens entdeckt

03.07.2023 - Deutschland
Computer-generated image

Symbolbild

Wie begann das Leben auf der Erde? Diese Frage fasziniert die Fachwelt seit langem, im Laufe der Zeit schmiedete sie diverse Theorien. Eine der Hypothesen geht davon aus, dass die Ursprünge unseres Daseins in warmen Pfützen zu suchen sind, die es vor vier Milliarden auf der Erde gegeben haben soll. Das Wasser darin hatte vermutlich Harnstoffmoleküle enthalten. Dieser war der UV-Strahlung der Sonne ausgesetzt, die damals relativ ungehindert zur Erdoberfläche durchdringen konnte. Das energiereiche Licht vermochte den Harnstoff umzuwandeln. Aus den Reaktionsprodukten konnten sich dann Biomoleküle bilden, die später als Bausteine des Lebens fungierten – so die Idee.

Ludger Inhester, DESY

Zwei benachbarte Harnstoff-Moleküle in einer wässrigen Lösung tauschen Protonen aus.

Diese „Warme-Pfützen“-Theorie war einer der Beweggründe für ein neuartiges Experiment, konzipiert von einem Forschungsteam aus Hamburg, Zürich und Genf und unter der Leitung von Hans Jakob Wörner von der Eidgenössischen Technischen Hochschule (ETH) Zürich und Jean-Pierre Wolf von der Universität Genf. Mit einer speziellen Röntgenquelle gelang es den Fachleuten, die ersten, extrem schnell ablaufenden Schritte der lichtinduzierten Harnstoff-Umwandlung zu enträtseln, wie sie nun im Fachblatt „Nature“ berichten.

Für seinen Versuch schoss das Team in Laboren der Universität Genf die Lichtpulse eines Lasers durch einen Strahl aus einer hochkonzentrierten Harnstoff-Lösung. Dabei ionisierten die Lichtblitze manche der Harnstoffmoleküle und schlugen jeweils ein Elektron aus ihnen heraus. Unmittelbar darauf schickten die Fachleute einen ultrakurzen Blitz aus weicher Röntgenstrahlung hinterher. Dieser fungierte als Sonde und verriet im Detail, wie der Harnstoff auf das Herausschlagen des Elektrons reagierte. Dann wiederholte die Arbeitsgruppe den Versuch mehrmals und veränderte dabei systematisch den zeitlichen Abstand zwischen Laser- und Röntgenpuls.

Dadurch ließ sich der Ablauf des Geschehens präzise rekonstruieren – bis auf wenige Femtosekunden (billiardstel Sekunden) genau. Eine besondere Herausforderung bestand darin, die gemessenen Spektren zu interpretieren. „Dazu bedurfte es detaillierter Computersimulationen, die wir hier bei DESY in jahrelanger Arbeit entwickelt haben“, erläutert DESY-Physiker Ludger Inhester vom Center for Free-Electron Laser Science (CFEL), einer gemeinsamen Einrichtung von DESY, Universität Hamburg und der Max-Planck-Gesellschaft.

Mit diesem Setup konnten die Fachleute die ersten Schritte der Harnstoff-Umwandlung enträtseln: Wird ein Harnstoffmolekül ionisiert, verliert es ein Elektron und ist elektrisch positiv geladen. Diese positive Ladung würde es liebend gern wieder loswerden. Möglich wird das, wenn sich ein anderes, nicht ionisiertes Harnstoffmolekül in unmittelbarer Nähe befindet. „Dann schiebt das erste Molekül ein Proton, also einen Wasserstoffkern, zum neutralen Molekül hinüber“, erläutert Inhester. „Durch diesen Protonentransfer entsteht ein Harnstoff-Radikal sowie ein positiv geladenes Harnstoff-Ion.“ Beide sind chemisch reaktiv und könnten vor Jahrmilliarden zur Entstehung von RNA-Molekülen geführt haben – essentiellen Bausteinen des frühen Lebens.

Mit ihrem Experiment konnten die Fachleute nicht nur erstmals den rasanten „Protonen-Deal“ zwischen zwei Harnstoffmolekülen nachweisen, sondern auch seine Dauer bestimmen – der Prozess nimmt nur wenige hundert Femtosekunden in Anspruch.

„Das Neue an unserem Experiment ist, dass wir extrem schnelle Prozesse bei einem Molekül beobachten konnten, das in einer wässrigen Umgebung vorliegt“, betont Inhester, der auch im Rahmen des Exzellensclusters CUI: Advanced Imaging of Matter der Universität Hamburg forscht. „Frühere Versuche hatten sich solche Reaktionen nur in der Gasphase angeschaut.“ Das Verhalten von Molekülen, die in einer Flüssigkeit wie Wasser schwimmen, ist für viele Fragestellungen besonders relevant – insbesondere für biologische Prozesse. Experimente in einer solchen Umgebung bilden nicht nur für die Messtechnik eine Herausforderung, sondern auch für die Computerberechnungen, die zur Interpretation der Messdaten nötig sind.

Künftig könnte die neue Methode verraten, was im Detail passiert, wenn ionisierende Strahlung auf Gewebe trifft und dort Strahlenschäden verursacht – Arbeiten, wie sie etwa am „Centre for Molecular Water Science“ angedacht sind, das in internationaler Kooperation auf dem DESY-Campus entsteht. Ferner liebäugeln die Forschenden damit, ähnliche Experimente auch an einer sehr viel größeren Röntgenquelle zu machen – dem europäischen Röntgenlaser European XFEL in Hamburg. Die gut drei Kilometer lange Anlage, an der DESY maßgeblich beteiligt ist, liefert die stärksten Röntgenblitze der Welt. „Auf diese Weise könnten wir den Protonentransfer aus anderen Blickwinkeln untersuchen“, sagt Inhester – und hofft, dadurch weitere Einzelheiten über diesen sehr fundamentalen Prozess herauszufinden.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller