Bedeutung einzelner Moleküle bei mechanischer Belastung in Zellen nachgewiesen
Neues Verfahren zur Untersuchung mechanischer Prozesse in Zellen
Die Arbeitsgruppe um den Zellbiologen Prof. Dr. Carsten Grashoff entwickelte ein Verfahren, bei dem Proteine mithilfe eines lichtempfindlichen Moleküls verändert und durch kurze Lichtimpulse mechanisch gesteuert werden können. Den Wissenschaftlern gelang es auf diese Weise, einzelne Proteine mit hoher zeitlicher und räumlicher Kontrolle zu brechen, um anschließend deren mechanische Bedeutung in Zellen zu untersuchen. So wiesen sie die Funktion von zwei Molekülen nach, die für die Adhäsion, also das Anhaften, von Zellen im Körper wichtig sind. Beide Moleküle stehen im Verdacht, bei einer Reihe von Erkrankungen eine zentrale Rolle zu spielen. Das Talin-Protein ist unerlässlich, um mechanische Kräfte während der Adhäsion von Zellen an das Bindegewebe zu tragen – ein Prozess, der zum Beispiel bei der Zellwanderung von großer Bedeutung ist. Das Desmoplakin-Protein ist hingegen wichtig, um mechanischem Stress in Zell-Zell-Verbindungen zu widerstehen, welche in Epithelgeweben wie der Haut vorkommen.
„Zusammen liefern diese Ergebnisse einen Nachweis, wie die mechanischen Eigenschaften bestimmter Zellstrukturen von einzelnen Proteinen gesteuert werden können“, betont Carsten Grashoff. Da die entwickelte Technik zur Modifikation der Proteine genetisch verschlüsselt ist und daher an beliebiger Stelle in das Erbgut eingebracht werden kann, erhoffen sich die Forscher eine breite Anwendbarkeit, um die Erforschung mechanobiologische Eigenschaften vieler anderer Proteine in lebenden Zellen, Modellorganismen und Krankheitsmodellen möglich zu machen.
Zum Hintergrund: Mechanische Reize werden in Zellen, wie viele andere Signale auch, letztlich auf der Ebene einzelner Proteine verarbeitet. Zwar haben Forscher in den vergangenen Jahren eine Reihe von Molekülen identifiziert, die mechanischen Kräften in Zellen direkt ausgesetzt sind. Es blieb jedoch oft unklar, wie wichtig die mechanischen Beiträge einzelner Proteine für die oft sehr komplexen zellbiologischen Prozesse sind.
Das Experiment des Teams um Carsten Grashoff gelang durch die Verwendung einer lichtempfindlichen Verbindung, die zwar hohen mechanischen Kräften widerstehen kann, bei Lichtbestrahlung aber auseinanderbricht. Vergleichbare, lichtempfindliche Proteine finden sich auch in Pflanzen, wo sie die Ausrichtung der Pflanze zum Licht regulieren. Durch das gezielte Einbringen dieser molekularen Sollbruchstelle mithilfe molekularbiologischer Methoden in die Sequenz bestimmter Gene (Talin, Desmoplakin) stellte das Team Zellen des Bindegewebes und der Haut her, die mit einem Laserstrahl auf Ebene einzelner Proteine gesteuert werden können. Die Modulation und Analyse der lebenden Zellen, die aus Zellkulturmodellen der Maus stammen, erfolgte mit Hilfe fluoreszenzmikroskopischer Methoden.
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
Tanmay Sadhanasatish, Katharina Augustin, Lukas Windgasse, Anna Chrostek-Grashoff, Matthias Rief and Carsten Grashoff (2023): A molecular optomechanics approach reveals functional relevance of force transduction across talin and desmoplakin. Science Advances Vol 9, Issue 25
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Zellanalyse
Die Zellanalyse ermöglicht es uns, Zellen in ihren vielfältigen Facetten zu erforschen und zu verstehen. Von der Einzelzellanalyse über die Durchflusszytometrie bis hin zur Bildgebungstechnologie – die Zellanalyse bietet uns wertvolle Einblicke in die Struktur, Funktion und Interaktion von Zellen. Ob in der Medizin, der biologischen Forschung oder der Pharmakologie – die Zellanalyse revolutioniert unser Verständnis von Krankheiten, Entwicklung und Behandlungsmöglichkeiten.
Themenwelt Zellanalyse
Die Zellanalyse ermöglicht es uns, Zellen in ihren vielfältigen Facetten zu erforschen und zu verstehen. Von der Einzelzellanalyse über die Durchflusszytometrie bis hin zur Bildgebungstechnologie – die Zellanalyse bietet uns wertvolle Einblicke in die Struktur, Funktion und Interaktion von Zellen. Ob in der Medizin, der biologischen Forschung oder der Pharmakologie – die Zellanalyse revolutioniert unser Verständnis von Krankheiten, Entwicklung und Behandlungsmöglichkeiten.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.