Einsatz von Künstlicher Intelligenz in der Arzneimittelentwicklung

WACKER, CordenPharma, LMU und HU Berlin trainieren Machine-Learning- Algorithmus für die Formulierung von RNA-Wirkstoffen

03.04.2023 - Deutschland

Die Wacker Chemie AG und die CordenPharma International GmbH haben gemeinsam mit der Ludwig-Maximilians-Universität München (LMU) und der Humboldt-Universität Berlin (HU Berlin) ein Projekt gestartet, um die Entwicklung von RNA-basierten Arzneimitteln zu beschleunigen. Ziel ist es, eine neue Generation von Lipid-Nanopartikeln (LNPs) zu entwickeln, die ein wesentlicher Bestandteil von RNA-basierten Arzneimitteln sind. Auf Basis dieser Formulierungen soll ein Machine-Learning-Algorithmus trainiert werden, der automatisiert die idealen Bestandteile für neue RNA-Formulierung identifiziert – bislang ein besonders zeit- und kostenintensiver Entwicklungsschritt. Das Projekt, das am 1. April 2023 startet, ist auf drei Jahre angelegt und wird vom Bundeswirtschaftsministerium mit rund 1,4 Mio. € gefördert.

Computer-generated image

Symbolbild

Nach dem Erfolg von RNA-basierten COVID-19-Impfstoffen wird Arzneimitteln, die RNA als Wirkstoff enthalten, großes medizinisches Potenzial zugetraut. Im Fokus der Entwicklung stehen dabei nicht nur Impfstoffe gegen Infektionskrankheiten, sondern auch Therapien gegen Krebs und Erbkrankheiten. Weltweit wird an verschiedenen Wirkstoffen mit unterschiedlichen Lipid-Nanopartikel- Zusammensetzungen gearbeitet. Mit ihrem gemeinsamen Projekt haben sich WACKER, CordenPharma, die LMU und die HU Berlin zum Ziel gesetzt, die Entwicklung von RNA-basierten Arzneimitteln zu beschleunigen. Um dies zu erreichen, entwickeln die Partner eine neue Generation von Lipid-Nanopartikeln (LNPs) sowie ein Machine-Learning-System für die RNA-Formulierung, das die Entwicklungszeit verkürzen und die Kosten senken soll.

Die Partner übernehmen unterschiedliche Aufgaben im Projekt. WACKER liefert mit der Herstellung der RNA-Moleküle das Kernstück der RNA-basierten Arzneimittel. Neben der in der klinischen Anwendung im Vordergrund stehenden Messenger-Ribonukleinsäure (mRNA) stellt WACKER für das Projekt auch andere RNA-Moleküle wie zum Beispiel selbstamplifizierende RNAs (saRNA) und zirkuläre RNAs (circRNA) her. Für diese prüft das Unternehmen eigens neue Herstellprozesse. „Die RNA-Molekül-Arten haben verschiedene Eigenschaften, eignen sich für unterschiedliche Zwecke und werden unterschiedlich hergestellt“, erklärt Dr. Hagen Richter, Leiter der Nukleinsäureforschung bei WACKER und verantwortlich für die Koordination des Förderprojektes. „saRNA und mRNA werden derzeit vor allem in der Impfstoffentwicklung eingesetzt. circRNAs zeichnen sich durch eine höhere Stabilität aus und eignen sich damit vor allem für Therapien, bei denen Wirkstoffe langsamer und länger freigesetzt werden müssen.“ WACKER hat in den vergangenen Jahren bereits Expertise bei der Herstellung von mRNA nach GMP-Richtlinien (Good Manufacturing Practice) aufgebaut.

CordenPharma wird im Projekt gemeinsam mit der HU Berlin Grundbausteine für Nanopartikel, sogenannte modifizierte Lipide, entwickeln. Sie sorgen dafür, dass die Wirkstoffe sicher in den Körper gelangen und am Ziel freigesetzt werden. „Die Entwicklung von Lipid-Nanopartikeln für die RNA-Formulierung ist ein komplexer Prozess, der spezielle Lipide erfordert. Bisher basiert die LNP-Optimierung hauptsächlich auf Screening von funktionellen Lipiden in vielen zeit- und kostenintensiven Experimenten. Machine Learning, welches ein Teilgebiet der künstlichen Intelligenz darstellt, wird dabei helfen, den Zusammenhang von funktionellen Lipiden und effektiven mRNA-Impfstoffen in Zellkulturexperimenten zu verstehen. Dies erlaubt uns, eine neue Generation von Lipiden mit verbesserten Eigenschaften zu entwickeln, die zu noch wirksameren aktiven Inhaltsstoffen führen“, sagt Dr. Adriano Indolese, Global Head of Development & Innovation bei CordenPharma International. CordenPharma und die HU Berlin werden die neuen Lipidbestandteile synthetisieren und diese in Verbindung mit den verschiedenen RNA-Molekülen physikochemisch analysieren. Die zelluläre Funktionalität der Formulierungen wird anschließend an der LMU in Zellkulturversuchen untersucht. Hier zeigt sich, wie zielgerichtet und gut die Wirkstoffe freigesetzt werden. Mit dem Screening verschiedener RNA-Arten in Verbindung mit den modifizierten Lipiden soll eine möglichst breite Datenbasis entstehen.

Die Daten aus den physikalischen, chemischen und biologischen Analysen der LNPs sowie der verschiedenen RNA-Moleküle werden genutzt, um einen Machine-Learning-Algorithmus für RNA-Formulierungen zu trainieren. Beim maschinellen Lernen geht es darum, dass eine künstliche Intelligenz aus Beispielen lernt und diese nach Beendigung der Lernphase verallgemeinern kann. Konkret soll das System, dessen Aufbau an der LMU stattfinden wird, anhand der Eigenschaften der LNPs die passgenaue Zuordnung zu verschiedenen RNA-Molekülen und letztlich Therapieformen leisten. Der Algorithmus soll nach der Lernphase in der Lage sein, beliebigen RNA-Molekülen passende Formulierungsansätze zuzuordnen. Nach dem Training des Systems wird in der letzten Phase des auf drei Jahre angelegten Projekts die Funktionalität des Systems in einer konkreten Anwendung geprüft. Das Bundeswirtschaftsministerium fördert das Gemeinschaftsprojekt mit rund 1,4 Mio. €.

Weitere News aus dem Ressort Wirtschaft & Finanzen

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!