Dank Künstlicher Intelligenz: Neue Methode für gezieltes Design von Molekülen
Industrielle Prozesse, Wirkstoffentwicklung und Optoelektronik als mögliche Anwendungsgebiete
Joe Gilkes
Die Forscher:innen kombinierten bei ihren Experimenten verschiedene Methoden der Künstlichen Intelligenz. Erstautorin Juniorprof. Dr. Julia Westermayr vom Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie der Universität Leipzig erklärt: „Ein Modell hat gelernt, quantenchemische Eigenschaften von Molekülen vorherzusagen, während das andere gelernt hat, wie diese Moleküle aufgebaut sind.“ Das erste Modell sei notwendig, um das Screening von Eigenschaften mit hoher Genauigkeit zu ermöglichen, da herkömmliche Methoden zur Berechnung quantenchemischer Eigenschaften sehr zeit- und rechenintensiv sind. In einem iterativen Prozess, bei dem Schritte wiederholt werden, bis ein bestimmtes Ziel erreicht ist oder bestimmte Kriterien erfüllt sind, haben die Forscher:innen dann beide Modelle genutzt, um neue Moleküle zu generieren und diese nach bestimmten Eigenschaften zu filtern. „In jeder Runde hat das Design-Modell gelernt, wie die bestgeeigneten Moleküle aufgebaut sind und dadurch in der nächsten Runde gezielt Moleküle mit optimierten Eigenschaften vorhergesagt“, sagt Westermayr.
Die Basis zu der Studie wurde von Rhyan Barrett bei einem Praktikum an der University of Warwick in England gelegt, das vom Netzwerk „Artificial Intelligence and Augmented Intelligence for Automated Investigations for Scientific Discovery“ (AI4SD) finanziert wurde. Es bringt Forschende zusammen, die sich mit dem Einsatz modernster Technologien der Künstlichen und erweiterten Intelligenz befassen, um die Grenzen der wissenschaftlichen Entdeckung zu erweitern.
Moleküle mit optimierten Eigenschaften
„Besonders erstaunt waren wir, dass wir mithilfe der Künstlichen Intelligenz Muster in den Daten finden konnten, die zu optimierten Eigenschaften führten“, sagt Rhyan Barrett. Zuletzt gelang es den Forscher:innen noch, multiple Eigenschaften zu optimieren. Dies ermöglicht es, die Methode zu verwenden, um paretooptimale Lösungen zu finden. Eine paretooptimale Lösung liegt dann vor, wenn die Lösung von mehreren optimierten Eigenschaften gefunden wurde und die einzelnen Eigenschaften nur noch besser werden können, wenn eine andere Eigenschaft dabei schlechter wird.
Die entwickelte Methode wurde verwendet, um funktionelle organische Moleküle, die für die Optoelektronik relevant sind, zu designen. Verwendet werden könnten diese neuartigen Materialien mit höherer Effizienz unter anderem in der Solarenergie-Branche, für LED-Beleuchtung, Display-Technologie, Datenspeicherung, Sensorik sowie für optische Fasern in der Kommunikationstechnologie. Die neue Methode lässt sich auch auf andere Gebiete übertragen. Mögliche andere Anwendungsgebiete sind die Wirkstoffentwicklung für neue Medikamente mit gezielten, verbesserten Eigenschaften, die gegen bestimmte Krankheiten wirken. Auch in den Umweltwissenschaften kann Moleküldesign eingesetzt werden, um neue Verfahren zur Reinigung von Abwasser und Luft zu entwickeln. In der Biotechnologie basiert die Entwicklung neuer Biokatalysatoren und Enzyme auf dem Design von Molekülen mit spezifischen Funktionen.