Neue Biobatterie zur Speicherung von Wasserstoff entwickelt

Mikrobiologen ist es gelungen, mit Hilfe von Bakterien Wasserstoff kontrolliert zu speichern und wieder abzugeben

27.05.2022 - Deutschland

Der Kampf gegen den Klimawandel macht die Suche nach CO2-neutralen Energieträgern immer dringlicher. Grüner Wasserstoff, der mit Hilfe von erneuerbaren Energien wie Windkraft oder Solarenergie aus Wasser gewonnen wird, ist einer der Hoffnungsträger. Allerdings sind Transport und Speicherung des hochexplosiven Gases schwierig und weltweit suchen Forschende nach chemischen und biologischen Lösungen. Ein Team von Mikrobiologen der Goethe-Universität haben in Bakterien, die unter Luftabschluss leben, ein Enzym gefunden, das Wasserstoff direkt an CO2 bindet und damit Ameisensäure herstellt. Dieser Prozess ist vollkommen reversibel, eine Grundvoraussetzung für eine Wasserstoffspeicherung. Diese acetogenen Bakterien, die zum Beispiel in der Tiefsee vorkommen, ernähren sich von Kohlendioxid, das sie mithilfe von Wasserstoff zu Ameisensäure verstoffwechseln. Normalerweise ist diese Ameisensäure aber nur ein Zwischenprodukt ihres Stoffwechsels, das weiter zu Essig und Ethanol verdaut wird. Doch das Team um den Leiter der Abteilung Molekulare Mikrobiologie und Bioenergetik Prof. Volker Müller hat die Bakterien so angepasst, dass dieser Prozess nicht nur auf der Stufe der Ameisensäure gestoppt, sondern auch rückabgewickelt werden kann. Das Grundprinzip ist bereits seit 2013 patentiert.

pixabay.com

Symbolbild

Goethe-Universität Frankfurt am Main

Modell einer möglichen bakteriellen Wasserstoffspeicherung: Während des Tages wird mit Hilfe einer Solaranlage Strom erzeugt, der dann die Hydrolyse von Wasser antreibt. Der dadurch erzeugte Wasserstoff wird durch die Bakterien an CO2 gebunden und dadurch Ameisensäure gebildet. Diese Reaktion ist frei reversibel, und die Richtung der Reaktion wird nur durch die Konzentration der Ausgangsstoffe und Endprodukte gesteuert. Während der Nacht sinkt die Wasserstoffkonzentration im Bioreaktor und die Bakterien beginnen, den Wasserstoff aus Ameisensäure wieder freizusetzen. Der freigesetzte Wasserstoff kann dann als Energiequelle genutzt werden.

pixabay.com
Goethe-Universität Frankfurt am Main

„Die gemessenen Raten der CO2-Reduktion zu Ameisensäure und zurück sind die höchsten je gemessenen und sie sind um ein Vielfaches größer als bei anderen biologischen oder chemischen Katalysatoren; die Bakterien benötigen für die Reaktion auch nicht wie die chemischen Katalysatoren seltene Metalle und keine extremen Bedingungen wie hohe Temperaturen und hohe Drücke, sondern erledigen den Job bei 30°C und Normaldruck“, berichtet Müller. Nun vermeldet die Gruppe einen neuen Erfolg, die Entwicklung einer Biobatterie zur Wasserstoffspeicherung mit Hilfe der genannten Bakterien.

Für eine kommunale oder häusliche Wasserstoffspeicherung ist ein System sinnvoll, bei dem die Bakterien in ein und demselben Bioreaktor zunächst Wasserstoff speichern und dann wieder freisetzen, möglichst stabil über einen langen Zeitraum. Fabian Schwarz, der im Labor von Prof. Müller seine Doktorarbeit zu diesem Thema geschrieben hat, ist die Entwicklung eines solchen Bioreaktors gelungen. Er hat die Bakterien acht Stunden mit Wasserstoff gefüttert und sie dann während einer 16-stündigen Nachtphase auf eine Wasserstoff-Diät gesetzt. Die Bakterien haben den Wasserstoff daraufhin vollständig wieder freigesetzt. Die ungewollte Bildung von Essigsäure konnte durch gentechnische Verfahren eliminiert werden. „Das System lief für mindestens zwei Wochen ausgesprochen stabil“ erklärt Fabian Schwarz, der sich freut, dass diese Arbeiten zur Veröffentlichung in „Joule“, einem angesehenen Journal für chemische und physikalische Verfahrenstechnik, angenommen wurde. „Dass Biologen in diesem hochkarätigen Journal publizieren, ist eher ungewöhnlich“, freut sich Schwarz.

Volker Müller hat sich schon in seiner Doktorarbeit mit den Eigenschaften dieser speziellen Bakterien befasst – und jahrelang Grundlagenforschung dazu betrieben. „Ich habe mich dafür interessiert, wie diese ersten Organismen ihre Lebensvorgänge organisiert haben und wie sie es schaffen, unter Luftabschluss mit einfachen Gasen wie Wasserstoff und Kohlendioxid zu wachsen“, erklärt er. Durch den Klimawandel gewann seine Forschung eine neue, anwendungsorientierte Dimension. Die Biologie biete – für viele Ingenieure überraschend – durchaus praktikable Lösungen an.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Biostat STR

Biostat STR von Sartorius

Biostat STR Bioreaktoren der Generation 3

Entwickelt für ultimative Upstream-Leistung

Bioreaktoren
Ambr® 250 Modular

Ambr® 250 Modular von Sartorius

Mini-Bioreaktoren für Zell- und Gentherapien mit hoher Skalierbarkeit

Maximieren Sie Ihre Prozessentwicklung mit zuverlässigen Einweg-Gefäßen

Bioreaktoren
Ambr® 250 HT Consumables

Ambr® 250 HT Consumables von Sartorius

Effiziente Bioprozesse mit Einweg-Bioreaktoren

Minimieren Sie Reinigungsaufwand und maximieren Sie Flexibilität für Zell- und Mikrobiolkulturen

Bioreaktoren
Brooks Instrument SLA Biotech-Serie

Brooks Instrument SLA Biotech-Serie von Brooks Instrument

Steuern Sie Bioprozesse effizient und präzise mit Durchflussreglern für Biotechnologie-Anwendungen

Die SLA Biotech-Serie ist speziell auf die Anforderungen in Bioprozessen hin entwickelt worden

Massendurchflussregler
SLAMf Biotech-Serie Massendurchflussregler

SLAMf Biotech-Serie Massendurchflussregler von Brooks Instrument

SLAMf Durchflussregler mit robustem Gehäuse (IP66 / NEMA 4X)

Spezielle Ausstattung für Biotech-Prozessanlagen, geeignet für Spritzwasser und Hochdruckreinigung

Massendurchflussregler
Flexcell Systems

Flexcell Systems von Dunn

Flexcell Zelldehnungsbioreaktoren für zelluläre Biomechanik-Anwendungen

Weltweit in über 1300 Laboratorien eingesetzt und in über 4000 Forschungspublikationen zitiert

Bioreaktoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Alle FT-IR-Spektrometer Hersteller