Körpereigene Abwehr bereits bei geringen Feinstaubkonzentrationen überlastet
Feinstaub überlagert den Abbau von Wasserstoffperoxid, was zu gesundheitlichen Auswirkungen durch oxidativen Stress führen kann
„Bei Schadstoffbelastungen können die Abwehrmechanismen in unserem Körper überfordert sein, sodass Hydroxyl-Radikale entstehen, die zu oxidativem Stress führen. Für unsere Studie haben wir diese Prozesse in der Lunge nachgestellt“, erklärt Thomas Berkemeier, Leiter der Gruppe „Chemische Kinetik und Reaktionsmechanismen" am MPIC. „Wir haben herausgefunden, dass selbst geringe Feinstaubkonzentrationen dazu führen können, dass die körpereigene Abwehr umgangen wird.“ Für solch lungengängigen Feinstaub, dessen Partikel kleiner als 2,5 Mikrometer sind, fanden sich im Modell laut Berkemeier deutliche Effekte schon bei vergleichsweise geringen Schadstoffbelastungen, wie man sie auch außerhalb belasteter Innenstädte finden kann. Für den Mainzer Forscher sind die aktuellen Empfehlungen der WHO folgerichtig. Die Organisation hatte Ende September den Leitwert für Feinstaub der Größe PM2,5 von zehn Mikrogramm pro Kubikmeter Luft auf fünf gesenkt.
Körpereigene Abwehr bereits bei geringen Feinstaubkonzentrationen überlastet
In der kürzlich veröffentlichten Studie rückt das Molekül Wasserstoffperoxid (H2O2), das auch als Bleichmittel bekannt ist, in das Zentrum des chemischen Mechanismus. Es entsteht unter anderem in der Lunge und reichert sich dort in kleinen Mengen an. Atmen wir nur saubere Luft ein, verwandeln Enzyme den Großteil des Wasserstoffperoxids in harmlose Moleküle wie Wasser. Schadstoffe treten jedoch mit den Enzymen in Konkurrenz und verwandeln das Wasserstoffperoxid in hoch reaktive Hydroxyl-Radikale. Diese schädigen Biomoleküle wie Proteine und Lipide in der Lunge, was oxidativen Stress verursacht. Die Ursache liegt darin, dass Feinstaub – je nach Ursprung – Kupfer- und Eisenionen enthalten kann, die die Umwandlung von Wasserstoffperoxid in Hydroxyl-Radikale begünstigen. Chemiker sprechen von der Fenton-Reaktion.
„Da sie so reaktiv sind, können Hydroxyl-Radikale nicht wirksam durch Antioxidantien abgefangen werden. Der einzige Schutz gegen diese Radikale besteht darin, ihre Bildung in unserem Körper zu verhindern", sagt Steven Lelieveld, Mitglied der Forschungsgruppe und Erstautor der Studie. „Und das gelingt nur, wenn unsere Atemluft möglichst sauber ist.“
„Die Studie ist ein bedeutender Schritt für unser Verständnis der gesundheitlichen Auswirkungen von Luftverschmutzung. Mit dem neuen Modell können wir die Wirkungen und Wechselwirkungen verschiedener Luftschadstoffe quantitativ bewerten", fasst Ulrich Pöschl, Leiter der Abteilung Multiphasenchemie des Mainzer Instituts, zusammen. „Luftverschmutzung ist immer noch eine der häufigsten Todesursachen weltweit. Wir werden die neu gewonnenen Erkenntnisse mit epidemiologischen Daten verknüpfen, um Empfehlungen für effiziente Strategien zur Luftreinhaltung geben zu können."
Originalveröffentlichung
Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S. J., Shiraiwa, M., Poschl, U., Berkemeier, T.; "Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species"; Environ. Sci. Technol.; 55(20), 14069-14079, (2021)
Meistgelesene News
Originalveröffentlichung
Lelieveld, S., Wilson, J., Dovrou, E., Mishra, A., Lakey, P. S. J., Shiraiwa, M., Poschl, U., Berkemeier, T.; "Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species"; Environ. Sci. Technol.; 55(20), 14069-14079, (2021)
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.