Kleine Moleküle mit Doppelrolle
Wie kleine RNA- und Protein-Moleküle den Stoffwechsel von Cholera-Bakterien und die Produktion des Cholera-Toxins regulieren
Kai Papenfort/Liana Franke (Uni Jena)
Zentral dafür ist eine kleine Ribonukleinsäure (sRNA) sowie ein kleines Protein. „Kleine Ribonukleinsäuren und kleine Proteine wurden in der Vergangenheit häufig übersehen, spielen aber eine wichtige Rolle für die Physiologie von Mikroorganismen“, erläutert Prof. Dr. Kai Papenfort. „Die molekularen Mechanismen, mit denen diese kleinen Moleküle wirken, sind bislang nur unvollständig erforscht“, fährt der Professor für Allgemeine Mikrobiologie von der Universität Jena fort.
Ribonukleinsäure greift zweifach in den Stoffwechsel des Cholera-Erregers ein
Papenfort und sein Team konnten in der vorgelegten Publikation zeigen, dass ein einzelnes RNA-Molekül, genannt Vibrio cholerae dual RNA and protein (vcdRP), gleich doppelt in den Stoffwechsel des Cholera-Erregers eingreift und so dessen schädliche Wirkung steuert. „Zum einen inhibiert das in VcdRP enthaltene sRNA-Molekül die Produktion des Cholera-Toxins. Zum anderen nimmt diese kleine Ribonukleinsäure aber auch gleichzeitig selbst die Rolle einer Erbinformation ein und kodiert den Bauplan für ein kleines regulatorisches Protein“, sagt Kai Papenfort. Dieses Protein wiederum aktiviert einen zentralen Stoffwechselweg, der Kohlenstoff aus der Nahrung in Energie und biosynthetische Bausteine, wie z. B. Aminosäuren, umwandelt.
„Unsere Arbeit zeigt, dass die Toxinproduktion und damit die krankheitsverursachenden Eigenschaften des Cholera-Bakteriums direkt an seinen Stoffwechsel gekoppelt sind“, macht Papenfort deutlich. Die Forschenden konnten damit erstmals eine sRNA mit einer solchen Doppelfunktion in Cholera-Bakterien identifizieren. Ihre Erkenntnisse wollen sie nutzen und neue Wege zur Bekämpfung von Cholera entwickeln. Gleichzeitig könnten die neuen Daten bei biotechnologischen Anwendungen mit Mikroorganismen von Nutzen sein, die denselben molekularen Mechanismus der RNA mit Doppelfunktion nutzen. Mit seiner Forschung unterstützt das Team um Papenfort das Ziel des Exzellenzclusters, grundlegende Mechanismen mikrobieller Gemeinschaften zu verstehen und innovative Therapieansätze zu entwickeln.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Ab sofort nichts mehr verpassen: Unser Newsletter für Biotechnologie, Pharma und Life Sciences bringt Sie jeden Dienstag und Donnerstag auf den neuesten Stand. Aktuelle Branchen-News, Produkt-Highlights und Innovationen - kompakt und verständlich in Ihrem Posteingang. Von uns recherchiert, damit Sie es nicht tun müssen.