Zelluläre Filamente im Takt
Studie legt Grundstein für eine Vielzahl potenzieller Anwendungen
MPIDS / Fleischmann, Novak, Golestanian
Zilien sind fadenförmige, haarähnliche Strukturen, die auf fast allen Zellen des menschlichen Körpers zu finden sind. Je nach Gewebe erfüllen sie eine Vielzahl wichtiger Aufgaben, wie z. B. den Abtransport von Schleim in der Luftröhre, den Zugang zu Nährstoffen und die Gewährleistung der Links-Rechts-Asymmetrie während der embryonalen Entwicklung. Als Kontrolleure des Flüssigkeitstransports in großem Maßstab folgen die beweglichen Zilien dabei zyklischen Schlagmustern: Auf diese Weise übermitteln sie mechanische Signale an benachbarte Zilien und erzeugen gemeinsam sogenannte metachronische Wellen. In der Regel sind Tausende von Zilien an der Erzeugung einer solchen Welle beteiligt; daher muss ihre Bewegung genau reguliert werden, um ihre biologische Funktion zu gewährleisten und zu optimieren. Aufgrund der überwältigenden Komplexität und des vielschichtigen Charakters des Phänomens fehlte bisher ein mechanistisches Verständnis der Selbstorganisation von Zilien zu metachronischen Wellen. "Unser Modell ermöglicht ein tiefgreifendes Verständnis der Organisation von Zilien-Arrays", erklärt Professor Ramin Golestanian, Leiter der Studie und Direktor der Abteilung für Physik lebender Materie am MPIDS. "Zum ersten Mal sind wir nun in der Lage, die Parameter und Eigenschaften einer sich bildenden metachronischen Welle vorherzusagen."
Das Verhalten der Zilien hängt sowohl von äußeren als auch von inneren Faktoren ab
Durch Entwicklung derartiger Modelle für Zilien-Gruppierungen kann ebenfalls beschrieben werden, wie externe und interne Faktoren die Funktion des Systems beeinflussen können. So können beispielsweise Veränderungen in der Konzentration bestimmter Chemikalien oder Komponenten in der Umgebung Veränderungen auf kleiner Skala hervorrufen und somit die entstehenden Wellen verändern und zu systemischen Funktionsstörungen führen. Um dies zu verstehen, muss das Verhalten der Zilien von mehreren Seiten beleuchtet werden. Seit den bahnbrechenden Arbeiten von G.I. Taylor vor vielen Jahrzehnten ist bekannt, dass hydrodynamische Interaktionen zwischen Zilien für deren Koordination sorgen können. Mit anderen Worten: Die Koordination der Zilien wird dadurch erklärt, dass die aus dem Schlag einer Zilie entstehende Strömung das Verhalten der gesamten Gruppe beeinflusst, was letztlich die metachronische Welle verursacht. Das neue Modell, das von Fanlong Meng, Rachel Bennett, Nariya Uchida und Ramin Golestanian erstellt wurde, ermöglicht es nun, die Bedingungen für viele unabhängig voneinander schlagende und sich koordinierende Zilien zu berücksichtigen. In ihrem Modell konzentrieren sich die Autoren auf die grundlegenden Eigenschaften der Zilien, wie z. B. ihre unterschiedlichen schlagharmonischen oder genomischen Merkmale. Indem sie diese Eigenschaften zu dem resultierenden, wellenförmigen Schlagrhythmus ins Verhältnis setzen, schaffen sie einen leistungsfähigen theoretischen Rahmen zur Beschreibung der Zilien-Koordination.
Das neue Modell ist somit in der Lage, sowohl Veränderungen innerhalb des Zilien-Systems zu erklären als auch Vorhersagen über das kollektive Verhalten der Zilien zu treffen. "Da dies ein besseres Verständnis der Organisation auf mikroskopischer Ebene ermöglicht, legt die Studie den Grundstein für eine Vielzahl potenzieller Anwendungen", fügt Golestanian hinzu. Dazu gehören die diagnostische Analyse von Fehlfunktionen in biologischen Proben, neue Ansätze für medizinische Behandlungen zur Beeinflussung des Verhaltens der Zilien oder auch die Entwicklung künstlicher Systeme unter Verwendung metachronischer Wellen.