Eine Fernsteuerung für den Gentransfer
Forschende entwickeln Technologie, um Gene kontrolliert in einzelne Zellen einzubringen
pixabay.com
Veränderung eines viralen Vektortyps
In ihrer neuen Methode bringen die Freiburger Forschenden die genetischen Informationen mit einer optischen Fernsteuerung ein. Dadurch nehmen nur Zellen, die mit rotem Licht beleuchtet werden, die gewünschten Gene auf. Die Wissenschaftler veränderten dafür einen viralen Vektortyp, einen so genannten AAV-Vektor, der bereits im klinischen Einsatz ist. „Wir haben dem viralen Vektor die Möglichkeit genommen, an Zellen anzudocken“, erklärt Hörner, „was ein essentieller Schritt ist, bevor das Erbgut eingeschleust werden kann.“
Um die Steuerung per Licht zu ermöglichen, haben die Forschenden das Rotlichtrezeptorsystem der Pflanze Arabidopsis thaliana (Acker-Schmalwand) entnommen: Dieses System besteht aus zwei Proteinen, PhyB und PIF, die aneinander binden, sobald PhyB mit roten Licht angeleuchtet wird. Das Freiburger Team brachte das Protein PIF auf die Oberfläche des viralen Vektors und modifizierte das andere Protein PhyB so, dass es an menschliche Zellen binden kann. Sobald sich dieser modifizierte Vektor, der so genannte OptoAAV, zusammen mit dem zellbindenden Protein in einer Zellkultur befindet, bindet das Protein an alle Zellen. „Wird nun eine ausgewählte Zelle mit rotem Licht beleuchtet, kann an diese Zelle der modifizierte Vektor binden und die Zielgene in die beleuchtete Zelle einschleusen“, erläutert Hörner.
Wichtiger Aspekt der biologischen Signalforschung
Durch diesen neuen Ansatz können die Forschenden innerhalb einer Gewebekultur die Zielgene in die gewünschten Zellen einführen. Zudem gelang es ihnen, die Gewebekultur nacheinander an unterschiedlichen Orten zu beleuchten, um somit unterschiedliche Gene in verschiedene Zellen innerhalb einer Kultur gezielt einzubringen. Mit dieser Technik ist es nun möglich, gewünschte Vorgänge in einzelnen Zellen zu steuern: Das ist essentiell, um zu verstehen, wie eine einzelne Zelle mit den Zellen in ihrer Umgebung kommuniziert, um zum Beispiel die Entwicklung oder Regeneration eines Organs zu steuern. „Da solche viralen Vektoren im therapeutischen Bereich immer häufiger verwendet werden“, sagt Weber, „denken wir, dass diese neue Technologie das Potential hat, um solche biomedizinischen Anwendungen präziser zu gestalten.“
Originalveröffentlichung
Hörner, M., Jerez-Longres, C., Hudek, A., Hook, S., Yousefi, O. S., Schamel, W. W. A., Hörner, C., Zurbriggen, M. D., Ye, H., Wagner, H. J., Weber, W.; "Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors"; Science Advances; 2021, Vol. 7, No. 25.