Biomedizin: viele Bilder – weniger Rätsel

Für den gleichen Arbeitsprozess werden statt 77 nur 9 Arbeitsstunden benötigt

11.11.2020 - Deutschland

Manchmal ist ein Bild einfach nur ein Bild. Und manchmal gibt es dem Betrachter Rätsel auf. In vielen wissenschaftlichen Disziplinen liegt der Schlüssel zu einem umfassenden Verständnis dreidimensionaler Aufnahmen – wie sie zum Beispiel im Computertomographen oder in der Lichtmikroskopie entstehen – in der Segmentierung. Dabei handelt es sich um eine langwierige und sehr zeitaufwändige Tätigkeit, die zudem äußerst fehleranfällig ist, wenn sie von Hand ausgeführt wird. Wissenschaftler des Heidelberger Instituts für Theoretische Studien (HITS) haben jetzt mit „Biomedisa“ eine leicht zu bedienende Open-Source Online-Anwendung für die Segmentierung biomedizinischer Aufnahmen entwickelt – im Rahmen eines interdisziplinären Forschungsprojektes mit Wissenschaftlern der Universität Heidelberg, dem Karlsruher Institut für Technologie (KIT) und der Technischen Universität Darmstadt. Die Ergebnisse ihrer Arbeit, die sich vor allem an Forschende ohne fundierte Computerkenntnisse richtet, wurden in der Fachzeitschrift Nature Communications veröffentlicht.

Lösel

Vergleich zwischen einer herkömmlichen Segmentierung (obere Reihe) und einer 3D-Segmentierung mit Biomedisa (untere Reihe). Für den gleichen Arbeitsprozess werden statt 77 nur 9 Arbeitsstunden benötigt. Biomedisa kommt mit knapp 20 Prozent der vorsegmentierten Schichten aus, bezieht aber die zugrunde liegenden Bilddaten vollständig mit ein. Dadurch werden auch Details wie Härchen sichtbar.

Auf dem Gebiet der bildgebenden Verfahren wurden in den letzten Jahren erhebliche Fortschritte erzielt, die zu immer höheren Auflösungen und schnelleren Erfassungszeiten geführt haben. Aufnahmen einzelner Zellen, Gewebeteile und Organe versorgen heutzutage medizinische Fachleute auf der ganzen Welt mit einer Unmenge von Informationen über den Gesundheitszustand ihrer Patienten. Wie aber lassen sich diese Bilder richtig deuten?

Der Status Quo: zeitaufwändige und fehleranfällige Analysen

Damit diese umfangreichen Aufnahmen ihr Informationspotential entfalten, bedarf es sehr häufig einer manuellen Segmentierung. Dabei wird ein digitales Bild in verschiedene Schichten aufgeteilt, um die Bildinformationen leichter zu erkennen und auszuwerten. Hierfür werden die erkennbaren Strukturen in eng beieinander liegenden Schichten als sogenannte Labels, wie z.B. „Hintergrund” oder „Objekt”, benannt. Bei der darauffolgenden Interpolation werden die Zwischenräume auf Grundlage der manuell vorsegmentierten Schichten bestimmt. Dabei werden die zugrundeliegenden Bilddaten normalerweise nicht berücksichtigt, wodurch lediglich ein Bruchteil der zur Verfügung stehenden Information verwendet wird.

„Die manuelle Segmentierung unbekannter biomedizinischer Datensätze ist oft sehr zeitaufwändig und fehleranfällig, da sehr viele Schichten segmentiert werden müssen. Zur Analyse dreidimensionaler Bilddaten wird dieses Verfahren aber noch sehr häufig angewendet. In vielen Instituten ist es tatsächlich gang und gäbe, Heerscharen von speziell geschulten Studierenden extra für diese Aufgabe einzusetzen,” so Philipp Lösel aus der Forschungsgruppe „Data Mining and Uncertainty Quantification” (DMQ) am HITS, der Biomedisa entwickelt hat.

Biomedisa: schneller, nutzerfreundlich und genauer

Die Biomedical Image Segmentation App Biomedisa ist eine frei verfügbare und leicht zu bedienende Open-Source Online-Anwendung, die speziell für die halbautomatische Segmentierung entwickelt wurde. Die Segmentierung basiert dabei auf einer intelligenten Interpolation einiger weniger vorsegmentierter Schichten, wobei die zugrundeliegenden Bilddaten vollständig mit einbezogen werden. Dadurch können wesentlich größere Abstände zwischen den Schichten gelassen werden. „Biomedisa kann den Segmentierungsprozess enorm beschleunigen und liefert gleichzeitig genauere Ergebnisse als dies bei einer rein manuellen Segmentierung der Fall ist,” so Thomas van de Kamp, Biologe am KIT, der aus eigener Erfahrung weiß, wie mühevoll eine manuelle Bildsegmentierung sein kann. Er steuerte für das Projekt Mikro-CT-Daten bei und evaluierte Biomedisa während des Entwicklungsprozesses.

Die Plattform ist über einen Webbrowser zugänglich, eine komplexe und langwierige Konfiguration der Software oder der Modellparameter ist nicht erforderlich. Die One-Button-Lösung kann bei verschiedenen 3D-Bildgebungsverfahren und zahlreichen biomedizinischen Anwendungen eingesetzt werden.

„Unser ausdrückliches Ziel war es,” so Vincent Heuveline, Direktor des Universitätsrechenzentrums Heidelberg (URZ) und DMQ-Gruppenleiter am HITS, „ein breit einsetzbares und nutzerfreundliches Tool zu entwickeln, um die Segmentierung von Proben unbekannter Morphologie zu beschleunigen und dabei gleichzeitig die Ergebnisse zu verbessern.”

„Biomedisa ist eine Software, die in direktem Maße von den neuesten Entwicklungen auf dem Gebiet der GPU-Technologie (Graphics Processing Unit) profitiert. Sie wurde speziell für die Verwendung von Graphikbeschleunigern entwickelt, um die stetig zunehmende Menge an Bilddaten zu verarbeiten,” fasst Philipp Lösel zusammen.

Auf dem Weg zu einer vollautomatischen Segmentierung

Daneben bietet Biomedisa noch eine Vielzahl weiterer Funktionen, wie z.B. die Entfernung von Ausreißern oder das Füllen von Löchern. Oberflächen können geglättet und die Unsicherheit, mit der die Ergebnisse erzielt wurden, quantifiziert werden. Außerdem können die Daten mit einer 3D-Rendering-Software visualisiert und mit anderen geteilt werden.

Zu guter Letzt ermöglicht Biomedisa das Training künstlicher neuronaler Netze. Dieses Verfahren gestattet eine vollständig automatisierte Segmentierung, falls eine Vielzahl ähnlicher Strukturen segmentiert wird, wie dies z.B. beim menschlichen Herzen der Fall ist. Dadurch werden numerische Simulationen möglich, die auf einem patientenspezifischen Modell des Herzens basieren und Ärztinnen und Ärzte im Krankenhaus bei der Planung chirurgischer Eingriffe unterstützen sollen.

Die Kombination all dieser Eigenschaften machen Biomedisa zu einer idealen Plattform für alle, denen Bilder im Idealfall mehr als tausend Worte sagen sollen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Limsophy LIMS

Limsophy LIMS von AAC Infotray

Optimieren Sie Ihre Laborprozesse mit Limsophy LIMS

Nahtlose Integration und Prozessoptimierung in der Labordatenverwaltung

LIMS
GUS-OS Suite

GUS-OS Suite von GUS

Ganzheitliche ERP-Lösung für Unternehmen der Prozessindustrie

Integrieren Sie alle Abteilungen für nahtlose Zusammenarbeit

Software
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...