Die künstliche Zelle auf einem Chip
Effiziente Mikrofluid-Technik produziert massgeschneiderte enzymbeladene Vesikel
Forschende der Universität Basel haben ein exakt kontrollierbares System entwickelt, um biochemische Reaktionskaskaden in Zellen nachzuahmen. Sie nutzen die Mikrofluid-Technik um Mini-Reaktionscontainer aus Polymeren herzustellen, die sie mit den gewünschten Eigenschaften ausstatten. Nützlich ist diese «Zelle auf einem Chip» nicht nur für die Erforschung von Prozessen in Zellen, sondern auch für die Entwicklung neuer Synthesewege für chemische Anwendungen oder für biologische Wirkstoffe in der Medizin.

Mithilfe einer neuen Methode stellten die Forschenden drei unterschiedliche Vesikeltypen her, die zwar eine einheitliche Grösse haben, aber eine unterschiedliche enzymatische Fracht tragen.
University of Basel, Department of Chemistry
Um zu überleben, zu wachsen und sich zu teilen, sind Zellen auf eine Vielzahl verschiedener Enzyme angewiesen, die zahlreiche aufeinander folgende Reaktionen katalysieren. Wann bestimmte Enzyme in welchen Konzentrationen vorliegen und welches das optimale Mengenverhältnis zwischen ihnen ist, lässt sich aufgrund der Komplexität der Vorgänge in lebenden Zellen nicht bestimmen. Stattdessen dienen einfachere, synthetische Systeme als Modelle für die Untersuchung dieser Prozesse. Die synthetischen Systeme simulieren dabei die Unterteilung lebender Zellen in Kompartimente, also voneinander abgegrenzte Bereiche.
Grosse Ähnlichkeit mit natürlichen Zellen
Das Team von Prof. Dr. Cornelia Palivan und Prof. Dr. Wolfgang Meier vom Departement Chemie der Universität Basel hat nun eine neue Strategie zur Herstellung derartiger synthetischer Systeme entwickelt. Sie produzieren dazu verschiedene synthetische Mini-Reaktionscontainer, Vesikel genannt, die in ihrer Gesamtheit als Zellmodelle dienen. Davon berichten sie im Fachjournal «Advanced Materials».
«Wir stützen uns hierbei nicht wie früher auf die Selbstorganisation der Vesikel, sondern haben eine effiziente Mikrofluid-Technik entwickelt, um enzymbeladene Vesikel kontrolliert zu produzieren», erläutert Wolfgang Meier. Die Grösse und die Zusammensetzung der Vesikel lassen sich mit der neuen Methode gezielt steuern, sodass in den unterschiedlichen Vesikeln dann - ähnlich wie in unterschiedlichen Kompartimenten einer Zelle – verschiedene biochemische Reaktionen ablaufen können ohne sich gegenseitig zu beeinflussen.
Für die Herstellung füllen die Forscher die verschiedenen Komponenten der gewünschten Vesikel in winzige Kanäle auf einem Silizium-Glas-Chip. Auf dem Chip treffen sich alle Mikrokanäle an einer Kreuzung. Unter den richtigen, einstellbaren Bedingungen bilden sich am Kreuzungspunkt der Kanäle gleichgrosse Polymertropfen, die in einer wässrigen Emulsion schwimmen.
Präzise kontrollierbar
Die Vesikel bestehen aus einer Polymermembran als Hülle und einer wässrigen Lösung im Inneren. Gleich bei der Herstellung werden die Vesikel gezielt mit unterschiedlichen Enzymkombinationen gefüllt. «Mit dieser neu entwickelten Methode können wir massgeschneiderte Vesikel herstellen und die gewünschte Konzentration der enthaltenen Enzyme genau einstellen", fasst Dr. Elena C. dos Santos, Erstautorin der Studie, die entscheidenden Vorteile zusammen.
In die Membran integrierte Proteine fungieren als Poren und ermöglichen den spezifischen Ein- und Austritt von Verbindungen in und aus den Polymervesikeln. Die Porengrössen sind dabei so bemessen, dass sie nur die Passage spezifischer Moleküle oder Ionen erlauben. Prozesse, die in der Natur eng nebeneinander in einer Zelle ablaufen, lassen sich so getrennt untersuchen.
«Wir konnten zeigen, dass das neue System eine gute Grundlage bietet, um enzymatische Reaktionsprozesse zu untersuchen», erklärt Cornelia Palivan. «Sie lassen sich optimieren, um die Produktion eines gewünschten Endprodukts zu erhöhen. Zudem sind wir mit der Technik in der Lage spezifische Mechanismen genau zu untersuchen, die bei Stoffwechselkrankheiten eine Rolle spielen oder die Umsetzung bestimmter Medikamente im Körper betreffen.»
Originalveröffentlichung
Meistgelesene News
Originalveröffentlichung
E. C. dos Santos, A. Belluati, D. Necula, D. Scherrer, C. E. Meyer, R. P. Wehr, C. G. Palivan, W. Meier; "Combinatorial strategy for studying biochemical pathways in double emulsion templated cell-sized compartment"; Advanced Materials; 2020
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft

Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte

Harvard-Universität lizenziert Nierentechnologie an neues Start-up - Kombination von 3D-Bioprinting und stammzellbasiertem Tissue Engineering könnte neue Therapieansätze für Nierenerkrankungen liefern

Magengeschwür-Operation bremst Parkinson-Krankheit - Parkinson-Erkrankung könnte im Magen beginnen
Athetose

Neues, präzises COVID-„Epidemometer“ - Neue Methode zur genauen Prognose der Epidemiedynamik: Ländervergleiche inklusive

Ein Auto parken mit zwölf Nervenzellen - Künstliche Intelligenz kann deutlich leistungsfähiger sein als bisher gedacht

Medizinische Biotechnologie mit Bestwerten - Neuer Spitzenwert: 38 Biopharmazeutika 2018 neu zugelassen
Celesio mit knappen Gewinn 2009

Ein Pilz verwandelt Zellulose direkt in neuartige Plattformchemikalie - Neues Verfahren zur Massenproduktion von erythro-Isozitronensäure aus Abfällen könnte die Substanz zukünftig für die Industrie interessant machen
Ein Monat EHEC: Etappen des Rätselratens
Thiazol
Analytica Forschungspreis 2010 - Professor Petra S. Dittrich und Dr. Matthias Selbach für Forschungsarbeit ausgezeichnet
