Allergische Immunantworten helfen bei der Abwehr bakterieller Infektionen

Spannende Entdeckung könnte auch erklären, warum der Körper im Laufe der Evolution am „Allergiemodul“ festgehalten hat

11.09.2020 - Österreich

Eine gemeinsame Studie des CeMM Forschungszentrums für Molekulare Medizin der Österreichischen Akademie der Wissenschaften, der Medizinischen Universität Wien und der Stanford University School of Medicine könnte miterklären, warum der Körper im Laufe der Evolution an einem bekannten „Allergiemodul“ festgehalten hat: Der betreffende Baustein des Immunsystems, bestehend aus Mastzellen und Immunglobolin E (IgE) Antikörpern, kann die Widerstandskraft des Körpers gegen sekundäre bakterielle Infektion erhöhen. Die Studie leistet einen wichtigen Beitrag zum allgemeinen Verständnis des Immunsystems und wurden im Fachjournal Immunity veröffentlicht.

Bobby R. Malhotra  CeMM

Künstlerische 3D Darstellung einer Mastzelle mit IgE Antikörpern und Staphylococcus aureus Bakterien

Rund 150 Millionen Europäer leiden unter wiederkehrenden Allergien. Laut einer Studie der europäischen Akademie für Allergologie und klinische Immunologie könnte bis 2025 jeder zweite Europäer von einer Allergie betroffen sein. Allergische Patienten durchlaufen zu Beginn der Erkrankung einen Prozess der "Sensibilisierung“. Dabei entwickelt ihr Immunsystem IgE-Antikörper, die körperfremde Stoffe, sogenannte Allergene erkennen. Die IgE Antikörper wiederum binden an Zellen mit einem FcεR1 Rezeptor, der vor allem auf Mastzellen, einer Art Immunzelle vorkommt, die in den meisten Geweben des Körpers vorhanden sind.

Bei erneutem Kontakt mit einem Allergen vermitteln die IgE-Antikörper die sofortige Aktivierung der Mastzellen und die unmittelbare Freisetzung verschiedener Mediatoren, z.B. Histamin, Proteasen oder verschiedene Zytokine, welche die klassischen allergischen Symptomen hervorrufen. Abhängig vom Organ, in dem es zum Kontakt mit dem Allergen kommt, können die Symptome von Niesen/Atemnot (Atemwege) über Durchfall und Magenschmerzen (Magen-Darm-Trakt) bis hin zu Juckreiz (Haut) reichen. Systemischer Kontakt mit Allergenen, zum Beispiel durch Erreichen des Blutkreislaufs, kann zur gleichzeitigen Aktivierung einer großen Anzahl von Mastzellen in verschiedenen Organen führen, was eine Anaphylaxie – eine schwerwiegende, lebensbedrohliche allergische Reaktion – hervorrufen kann.

Trotz langjähriger Forschung an IgE-Antikörpern und Mastzellen konnte die biologische Funktion dieses „Allergiemoduls“ bis heute noch nicht vollständig geklärt werden. Bereits 1991 postulierte Margie Profet in ihrer „Toxin-Hypothese“ eine positive Funktion allergischer Reaktionen bei der Abwehr von Giftstoffen. Frühere Studien von Stephen J. Galli, Senior Co-Autor der aktuellen Publikation an der Stanford University haben diese These untermauert und die Bedeutung von Mastzellen für die angeborene Resistenz gegen das Gift bestimmter Schlangen und der Honigbiene beschrieben, bzw. unter Mitwirkung von Erstautor Philipp Starkl, deren Relevanz im Zusammenspiel mit IgE-Antikörpern für die erworbene Immunabwehr gegen große Giftmengen aufgezeigt.

Auf Basis dieser Erkenntnisse untersuchten Philipp Starkl, Senior Postdoc an der Meduni Wien und CeMM, zusammen mit Sylvia Knapp, Professorin an der MedUni Wien und CeMM PI, sowie Stephen J. Galli, Professor an der Stanford University School of Medicine, und Kollegen in der aktuellen Studie, ob Mastzellen und IgE-Antikörper auch bei der Abwehr anderer toxinproduzierender Organismen, insbesondere pathogener Bakterien, relevant sein könnten. Wegen seiner enormen klinischen Relevanz und seines breiten Repertoires an Toxinen wählten die Autoren das Bakterium Staphylococcus aureus als Erregermodell. Staphylococcus aureus ist ein typischer antibiotikaresistenter Krankheitserreger und wird auch mit der Entwicklung allergischer Erkrankungen wie Asthma und atopische Dermatitis in Verbindung gebracht. Für ihre Forschung verwendeten die Wissenschaftler verschiedene S. aureus-Mausinfektionsmodelle in Kombination mit genetischen Ansätzen und In-vitro-Mastzellmodellen, um die Funktionen ausgewählter Komponenten der IgE-Effektormechanismen zu entschlüsseln.

Die Wissenschaftler fanden heraus, dass Mäuse mit einer milden S. aureus-Hautinfektion im Verlauf der folgenden adaptiven Immunantwort spezifische IgE-Antikörper gegen bakterielle Komponenten entwickeln. Diese Immunantwort verleiht den Mäusen erhöhte Resistenz gegenüber schweren sekundären Lungen- oder Haut- und Gewebeinfektionen. In diesem Modell sind Mäuse, denen funktionelle IgE-Effektormechanismen oder Mastzellen fehlen, nicht in der Lage einen solchen Schutz aufzubauen. Diese Erkenntnisse deuten darauf hin, dass die „allergische“ Immunantwort nicht ausschließlich pathologisch, sondern schützend bei bakteriellen Infektionen sein kann. Die Abwehr von toxinproduzierenden pathogenen Bakterien könnte daher eine wichtige biologische Funktion des "Allergiemoduls" sein.

Diese Studie stellt eine wichtige Kooperation dar, die von Philipp Starkl im Labor von Stephen J. Galli an der Stanford University zusammen mit anderen Kollegen initiiert und danach im Labor von Sylvia Knapp an der Medizinischen Universität Wien und am CeMM fortgesetzt wurde. Die spannende Entdeckung trägt nicht nur zum besseren allgemeinen Verständnis des Immunsystems und vor allem allergischer Immunreaktionen bei, sondern könnte auch miterklären, warum der Körper im Laufe der Evolution am „Allergiemodul“ festgehalten hat. Denn trotz ihrer gefährlichen Rolle bei allergischen Erkrankungen können IgE-Antikörper und Mastzellen positive Funktionen ausüben, die mithelfen, den Körper gegen Gifte und Infektionen durch toxinproduzierende Bakterien wie S. aureus zu schützen.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!