Fotosynthese im Tropfen

Forscher entwickeln einen künstlichen Chloroplasten

11.05.2020 - Deutschland

Pflanzen können es bereits seit Jahrmillionen: Kohlendioxid aus der Luft mithilfe von Sonnenenergie nutzbar machen. Künstliche Zellen als nachhaltige und umweltschonende Bioreaktoren zu bauen, dieser Herausforderung ist das Max-Planck-Forschungsnetzwerk MaxSynBio auf der Spur. Ein Max-Planck-Forscherteam um Tobias Erb vom Institut für terrestrische Mikrobiologie in Marburg hat nun eine Plattform für den automatisierten Bau zellgroßer Fotosynthese-Module entwickelt. Die künstlichen Chloroplasten sind in der Lage, das Treibhausgas Kohlendioxid mittels Lichtenergie zu binden und umzuwandeln.

© MPI f. terrestrische Mikrobiologe/ Erb

Als Mikrotröpfchen von ungefähr 90 Mikrometern Durchmesser und mit den gewünschten Enzymen ausgestattet, nutzen die semi-synthetischen Chloroplasten pflanzliche Thylacoid-Membranen zur Energieerzeugung. Sie fixieren auf diese Weise nach dem Vorbild der Natur Kohlendioxid mittels Sonnenenergie.

© MPI f. terrestrische Mikrobiologe/Erb

Mikrofluidik-Plattform zur Produktion von Mikrotropfen und ihrer Untersuchung in Echtzeit. Die Mikrotröpfchen werden in einer Kammer gesammelt und ihre Aktivität mikroskopisch überprüft, einschließlich Quantifizierung der enzymatischen Aktivität durch Messung der NADPH-Fluoreszenz. Mit Hilfe des Hellfeldes werden die Tröpfchen lokalisiert, die fotosynthetisch aktiven Membranen sind sichtbar. Diese Membranen fluoreszieren bei Anregung durch Licht bestimmter Wellenlängen (oben rechts). Unterschiedlich ausgestattete Tröpfchenpopulationen lassen sich mit Hilfe eines kodierenden Farbstoffs unterscheiden (Anregung bei 550 nm).

© MPI f. terrestrische Mikrobiologe/ Erb
© MPI f. terrestrische Mikrobiologe/Erb

Über Milliarden von Jahren haben Mikroorganismen und Pflanzen die Fotosynthese entwickelt. Die Umwandlung von Sonnenenergie in chemische Energie versorgt alles Leben auf der Erde mit Nahrung und Sauerstoff. In höheren Pflanzen geschieht dies in zellulären Kompartimenten, den Chloroplasten. Der künstliche Nachbau der Fotosynthese gilt als eine Art "Apollo-Projekt“ unserer Zeit:Damit ließen sich Kohlenstoffverbindungen wie Antibiotika und andere Produkte nachhaltig aus Licht und Kohlendioxid herstellen.

Doch wie konstruiert man eine künstliche fotosynthetisch aktive Zelle? Der Schlüssel liegt darin, ihre wesentlichen Komponenten zum richtigen Zeitpunkt am richtigen Ort zusammenwirken zu lassen. Die Max-Planck-Gesellschaft verfolgt dieses Ziel im Rahmen des interdisziplinären Forschungsnetzwerks MaxSynBio. Nun ist es seinem Marburger Forscherteam um Direktor Tobias Erb gelungen, eine Plattform zum automatisierten Bau zellgroßer fotosynthetisch aktiver Kompartimente zu schaffen. Die damit erzeugten künstlichen Chloroplasten können das Treibhausgas Kohlendioxid mittels Licht einfangen und umwandeln. 

Mikrofluidik trifft Synthetische Biologie

Dazu vereinte das Max-Planck-Team zwei neue Technologien: die Synthetische Biologie für die Konstruktion neuartiger biochemischer Reaktionsnetzwerke und die Mikrofluidik, eine Nanotechnologie für das Erzeugen zellähnlicher Strukturen aus flüssigen Materialien. „Als allererstes benötigten wir ein Energiemodul, das es uns erlaubt, chemische Reaktionen nachhaltig zu betreiben. Bei der Fotosynthese liefern Chloroplasten-Membranen die Energie für die Kohlendioxid-Fixierung. Ihre Fähigkeiten wollten wir nutzen", erklärt Tobias Erb.

Der aus der Spinatpflanze isolierter Fotosynthese-Apparat zeigte sich robust genug, um im Reagenzglas Einzelreaktionen und komplexere Reaktionsnetzwerke mit Licht antreiben zu können. Für die Dunkelreaktion setzten die Forschenden den von ihnen selbst entwickelten CETCH-Zyklus ein. Dieses künstliche Stoffwechselmodul besteht aus 18 Biokatalysatoren, die Kohlendioxid effizienter umwandeln als der in Pflanzen natürlich entstandene Kohlenstoffmetabolismus. Nach mehreren Optimierungsrunden gelang dem Team in Marburg die lichtgesteuerte Fixierung des Treibhausgases Kohlendioxid in vitro.

Die zweite Herausforderung war der Zusammenbau des Systems innerhalb eines definierten Kompartiments im Mikromaßstab. Auch sollte die Produktion im Hinblick auf spätere Anwendungen einfach automatisierbar sein. In Zusammenarbeit mit dem Labor von Jean-Christophe Baret vom Centre de Recherché Paul Pascal (CRPP) in Frankreich entwickelte dasTeam in Marburg eine Plattform für die Einkapselung der semi-synthetischen Membranen in zellähnliche Tröpfchen.

Effizienter als natürliche Fotosynthese

Die entstandene Mikrofluidik-Plattform kann Tausende standardisierter Tröpfchen produzieren, die je nach den gewünschten Stoffwechselfähigkeiten individuell ausgestattet werden können. "Wir können eine Vielzahl identisch ausgestatteter Tröpfchen herstellen, oder einzelne mit spezifischen Eigenschaften versehen", sagt Tarryn Miller, Erstautorin der Studie. "Diese lassen sich zeitlich und räumlich mittels Licht steuern.“ 

Im Gegensatz zur traditionellen Gentechnik am lebenden Organismus bietet dieser Ansatz entscheidende Vorteile: Er konzentriert sich auf minimales Design und ist nicht notwendigerweise auf die Grenzen der natürlichen Biologie beschränkt. "Mit der Plattform können wir neuartige Lösungen umsetzen, die die Natur während der Evolution nicht beschritten hat", erklärt Tobias Erb. Nach seiner Einschätzung bergen die Ergebnisse viel Zukunftspotenzial. So konnten die Forschenden zeigen, dass der künstliche Chloroplast mithilfe der neuartigen Enzyme und Reaktionen Kohlendioxid 100-mal schneller bindet als bisherige synthetisch-biologische Ansätze. "Langfristig könnten lebensechte Systeme in praktisch allen technologischen Bereichen Anwendung finden, einschließlich Materialwissenschaften, Biotechnologie und Medizin.“ Die Ergebnisse sind auch ein weiterer Schritt zur Bewältigung einer der größten Herausforderungen der Zukunft: die der ständig steigenden Konzentrationen von atmosphärischem Kohlendioxid.

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Biostat STR

Biostat STR von Sartorius

Biostat STR Bioreaktoren der Generation 3

Entwickelt für ultimative Upstream-Leistung

Bioreaktoren
Ambr® 250 Modular

Ambr® 250 Modular von Sartorius

Mini-Bioreaktoren für Zell- und Gentherapien mit hoher Skalierbarkeit

Maximieren Sie Ihre Prozessentwicklung mit zuverlässigen Einweg-Gefäßen

Bioreaktoren
Ambr® 250 HT Consumables

Ambr® 250 HT Consumables von Sartorius

Effiziente Bioprozesse mit Einweg-Bioreaktoren

Minimieren Sie Reinigungsaufwand und maximieren Sie Flexibilität für Zell- und Mikrobiolkulturen

Bioreaktoren
Brooks Instrument SLA Biotech-Serie

Brooks Instrument SLA Biotech-Serie von Brooks Instrument

Steuern Sie Bioprozesse effizient und präzise mit Durchflussreglern für Biotechnologie-Anwendungen

Die SLA Biotech-Serie ist speziell auf die Anforderungen in Bioprozessen hin entwickelt worden

Massendurchflussregler
SLAMf Biotech-Serie Massendurchflussregler

SLAMf Biotech-Serie Massendurchflussregler von Brooks Instrument

SLAMf Durchflussregler mit robustem Gehäuse (IP66 / NEMA 4X)

Spezielle Ausstattung für Biotech-Prozessanlagen, geeignet für Spritzwasser und Hochdruckreinigung

Massendurchflussregler
Flexcell Systems

Flexcell Systems von Dunn

Flexcell Zelldehnungsbioreaktoren für zelluläre Biomechanik-Anwendungen

Weltweit in über 1300 Laboratorien eingesetzt und in über 4000 Forschungspublikationen zitiert

Bioreaktoren
Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...