Wie genau Cyanobakterien CO2 so effizient umwandeln

29.01.2020 - Deutschland

Ein Forschungsteam konnte das Geheimnis der Bakterien lüften. Künftig wird es so möglich, bei ihnen abzuschauen.

© RUB, Marquard

Jacqueline Thiemann (links) und Marc Nowaczyk wollen demnächst bei Cyanobakterien abgucken.

Fotosynthetische Organismen nutzen mithilfe von Sonnenlicht Kohlenstoffdioxid aus der Luft zum Aufbau von Biomasse. Cyanobakterien sind dabei besonders effizient, weil sie das Gas zunächst in wasserlösliche Kohlensäure umwandeln und zwischenspeichern. Wie genau sie das machen, konnte ein Forschungsteam der Ruhr-Universität Bochum (RUB) gemeinsam mit internationalen Kollegen erstmals im Detail klären. Das macht es künftig möglich, die Tricks der Bakterien zu nutzen, zum Beispiel für die Produktion nachhaltiger Kraftstoffe.

Kohlensäure wird in der Zelle zwischengespeichert

Cyanobakterien nutzen für die Umwandlung von gasförmigem CO2 aus der Luft einen speziellen Membranproteinkomplex – eine Variante des fotosynthetischen Komplex I. Er arbeitet zum einen als Protonenpumpe, ist aber zusätzlich mit einem einzigartigen Modul versehen, das CO2 aus der Atmosphäre konzentriert. Das gasförmige CO2 wird dabei unter Energieverbrauch in wasserlösliche Kohlensäure umgewandelt, die dann in der Zelle gespeichert wird. Die dafür notwendige Energie stammt aus Sonnenlicht und wird durch weitere fotosynthetische Proteine bereitgestellt, mit denen der Komplex verbunden ist.

Durch die Analyse der molekularen Struktur des Komplexes mittels Kryoelektronenmikroskopie in Kombination mit Computersimulationen und weiteren biochemischen Experimenten konnte das Team um Privatdozent Dr. Marc Nowaczyk vom Lehrstuhl Biochemie der Pflanzen den Mechanismus dieser biologischen CO2-Umwandlung erstmals aufklären. „Wir waren überrascht, dass die molekularen Details des Prozesses doch anders sind als zuvor gedacht“, resümiert der Biologe.

Effizientere Fotosynthese für Nutzpflanzen oder nachhaltige Kraftstoffe

Die Aufklärung des Prozesses legt den Grundstein dafür, seine Bausteine künftig zu nutzen. „Auf dieser Basis könnte man versuchen, die fotosynthetische Effizienz anderer Organismen wie Nutzpflanzen weiter zu verbessern, oder man könnte diese in der Natur vorkommenden molekularen Prinzipien für eine effiziente Energieumwandlung auf synthetische Systeme übertragen, zum Beispiel zur Produktion nachhaltiger Solarkraftstoffe“, hofft Nowaczyk, der auch an der Entwicklung solcher Biohybridsysteme zur fotosynthetischen Energieumwandlung forscht. „Mich fasziniert dabei die Modularität der molekularen Bausteine, die wie in einem Baukastensystem neu miteinander kombiniert werden können“, erklärt er.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?