Katalase und Methämoglobin: so ähnlich und doch verschieden

Wichtige physiologische Prozesse beim Fettabbau und Sauerstofftransport aufgeklärt

16.04.2010 - Deutschland

Die Katalase ist eines der wichtigsten Enzyme im menschlichen Organismus und daher vielfach untersucht. Trotzdem war bislang nicht bekannt, warum das Protein, dessen aktives Zentrum ähnlich wie beim Methämoglobin aufgebaut ist, ein deutlich anderes Verhalten zeigt. Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit einem internationalen Wissenschaftlerteam dieses Rätsel gelöst.

Anders als Methämoglobin spaltet das Enzym Katalase mit einer außerordentlich hohen Effektivität Abbauprodukte der Fettsäurespaltung (Wasserstoffper­oxid), und es schützt den Organismus gegen den Angriff von so genannten Oxidantien. Ein Katalase-Molekül kann in der Sekunde bis zu eine Million Wasserstoffperoxid-Moleküle spalten, wobei Wasser und Sauerstoff entstehen. Methämoglobin dagegen bindet Sauerstoff und transportiert ihn.

Emad Aziz und Kathrin Lange (HZB) haben die elektronische Struktur der Katalase und des Methämoglobins mithilfe der Röntgenabsorptionsspektroskopie am Elek­tronenspeicherring BESSY II untersucht und den Ursprung der hohen enzymatischen Aktivität der Katalase aufgeklärt. Normalerweise ist es nicht möglich, Proteine in ihrer natürlichen Umgebung, also in Flüssigkeiten, mit weicher Röntgenstrahlung zu analysieren. Man benötigt ein Vakuum und muss die Proteine kristallisieren. Aufschlüsse über ihre Reaktionsmechanismen und Aktivitäten im Körper bekommt man so jedoch nicht, da sich ein im Kristall geordnetes Protein anders verhält als in natürlicher Umgebung, wo es gelöst in einer Flüssigkeit vorliegt.

Emad Aziz hat deshalb eine spezielle Experimentierkammer am Synchrotronring BESSY II konstruiert und aufgebaut. Darin verwendet er eine Durchfluss­zelle mit einem dünnen Membran-Fenster. Die für Röntgenlicht durchlässige Membran trennt die gelösten Proteine von der Kammer mit dem Vakuum. Dadurch wird verhindert, dass die flüssige Probe in die Kammer gelangt und dadurch das Vakuum zusammenbricht. Indem man im Durchfluss ständig frische Probe zuführt, können Strahlenschäden durch die Röntgenstrahlung vermieden werden. Mit der Experimentierkammer ­- Liquidrom genannt ‑ hat Emad Aziz in einer früheren Arbeit bereits nachgewiesen, dass das aktive Zentrum des Methämoglobins, die Häm-Gruppe­, in natürlicher Umgebung eine deutlich andere elektronische Struktur hat als in der kristallisierten Form. Dies war die weltweit erste spektroskopische Untersuchung mit weicher Röntgenstrahlung an einem Protein in seiner natürlichen Umgebung, veröffentlicht im vergangenen Jahr in den Physical Review Letters.

Auch die Katalase verfügt über eine derartige Häm-Gruppe, die als aktives Zentrum wirkt. Emad Aziz und Kathrin Lange haben jedoch festgestellt, dass sich die elektronische Struktur der aktiven Zentren bei den beiden Enzymen unterscheidet. Im Methämoglobin liegt das zentrale Eisenion in der Oxidationsstufe +3 vor, das heißt, es ist dreifach positiv geladen. In der Katalase beobachtet man dagegen einen partiellen +4-Charakter. Dadurch ist das Ion sehr viel reaktiver. Zur Bedeutung dieser Erkenntnis sagt Kathrin Lange: „Dass wir die Ursache der hohen enzymatischen Aktivität der Katalase nun verstehen, ist ein enormer Fortschritt. Damit werden wir in Zukunft derartige Systeme steuern oder nachahmen können.“

Außerdem zeigt die Arbeit eindrucksvoll, dass das von Aziz konstruierte Liquidrom eine einzigartige Möglichkeit bietet, physiologische Prozesse mithilfe von Synchrotronstrahlung zu untersuchen. Der 31-jährige Leiter einer Nachwuchsgruppe plant bereits die nächsten Experimente, in denen er Proteine mit verschiedenen Liganden und während ihrer enzymatischen Aktivität untersuchen will.

Originalveröffentlichung: Nora Bergmann, Sébastien Bonhommeau, Kathrin M. Lange, Stefanie M. Greil, Stefan Eisebitt, Frank de Groot, Majed Chergui and Emad F. Aziz; "On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre"; Phys. Chem. Chem. Phys., 2010

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

Heiß, kalt, heiß, kalt -
das ist PCR!

Verwandte Inhalte finden Sie in den Themenwelten

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren
Themenwelt anzeigen
Themenwelt Spektroskopie

Themenwelt Spektroskopie

Durch die Untersuchung mit Spektroskopie ermöglicht uns einzigartige Einblicke in die Zusammensetzung und Struktur von Materialien. Von der UV-Vis-Spektroskopie über die Infrarot- und Raman-Spektroskopie bis hin zur Fluoreszenz- und Atomabsorptionsspektroskopie - die Spektroskopie bietet uns ein breites Spektrum an analytischen Techniken, um Substanzen präzise zu charakterisieren. Tauchen Sie ein in die faszinierende Welt der Spektroskopie!

15+ Produkte
10+ White Paper
15+ Broschüren