Schlüsselproteine für die Reparatur von Nervenleitungen identifiziert

12.08.2019 - Deutschland

Wissenschaftler des DZNE haben eine Gruppe von Proteinen identifiziert, die beschädigte Nervenzellen nachwachsen lassen.

DZNE / Barbara Schaffran

Nervenzelle - aus den dorsalen Wurzelganglien - unter dem Mikroskop.

Es ist allgemein anerkannt, dass Zellen des zentralen Nervensystems ihre Wachstumsfähigkeit einstellen, wenn sie diese nicht mehr benötigen. Dies geschieht normalerweise nachdem sie ihre Zielzellen gefunden und Verbindungen zu ihnen gebildet haben. Doch auch alte Nervenzellen haben das Potenzial, auszuwachsen und Beschädigungen zu beheben – ähnlich wie junge Zellen. Dies zeigen aktuelle Laborstudien eines Forscherteams um Prof. Frank Bradke, Arbeitsgruppenleiter am Bonner Standort des DZNE. An diesen Untersuchungen waren auch Wissenschaftler der Universität Bonn beteiligt.

„Das ist durchaus überraschend. Denn es ist keineswegs selbstverständlich, dass bei jungen wie adulten, also ausgereiften Nervenzellen die gleichen Mechanismen vorliegen“, sagt Bradke. „Während der Embryonalentwicklung zeigen Nervenzellen starkes Wachstum. Ausgereifte Nervenzellen hingegen wachsen in der Regel nicht und können auch nicht regenerieren. Nun haben wir festgestellt, dass obwohl diese Fähigkeiten nach der Entwicklung sozusagen stumm geschaltet sind, adulte Zellen die Veranlagung für Wachstum und Regeneration dennoch behalten.“ Entscheidend dafür, so fanden die Wissenschaftler heraus, sind bestimmte Proteine, die Wachstum auch bei jungen Zellen vermitteln. „Diese Proteine sind wichtige Wachstumsregulatoren, unabhängig vom Entwicklungsstadium. Sie wirken auf das Stützgerüst der Nervenzelle und setzen damit dynamische Prozesse in Gang, die Wachstum und Regeneration überhaupt erst ermöglichen“, so der Bonner Neurobiologe.

Junge Wachstumstalente

In der Tat zeigen sich Nervenzellen nur während der Embryonalentwicklung als offensichtliche Wachstumstalente. In dieser Phase bilden sie lange Fortsätze – sogenannte Axone – aus, um sich untereinander zu verschalten und somit Signale übermitteln zu können. Doch die Fähigkeit zum Wachsen und damit auch zum Nachwachsen nach einer Verletzung schwindet, wenn das Nervensystem ausgereift ist. Lediglich Nervenzellen der „Peripherie“ – beispielsweise jene in Armen und Beinen – bewahren sich ein ausgeprägtes Potenzial, beschädigte Verbindungen wiederherzustellen. Werden jedoch Axone im Rückenmark unterbrochen, wachsen sie nicht nach: Die Signalstrecke für Nervenimpulse bleibt gestört. Dies kann Lähmungen hervorrufen und zu anderen schweren Behinderungen führen.

Eine spezielle Protein-Familie

„Schon lange treibt uns die Frage an, ob sich die Abläufe aus der frühen Entwicklungsphase reaktivieren lassen. Das könnte ein Weg sein, um Regeneration bei adulten Nervenzellen auszulösen“, sagt Sebastian Dupraz, Postdoc in der Arbeitsgruppe von Frank Bradke und ein führender Autor der aktuellen Studie. Vor diesem Hintergrund haben die Bonner Forscher in den vergangenen Jahren diverse Faktoren identifiziert, die das Wachstum von Nervenzellen beeinflussen. Bestimmte Proteine – die Proteine der „Cofilin/ADF“-Familie – erwiesen sich als Schlüsselelemente: Sie steuern im frühen Entwicklungsstadium die Ausbildung von Fortsätzen, aus denen dann die Axone hervorgehen. „Bei unserer aktuellen Studie haben wir festgestellt, dass genau diese Proteine auch bei ausgereiften Nervenzellen die treibende Kraft für Wachstum und Regeneration sind“, sagt Dupraz.

Molekulare Auflösung

Der zugrundeliegende Mechanismus, so erkannten Bradke und Mitarbeiter, ist der Ab- und Aufbau sogenannter Aktin-Filamente. Diese langgestreckten Moleküle sind Bestandteil des molekularen Gerüsts, das der Zelle Gestalt und Stabilität verleiht. Die Proteine der Cofilin/ADF-Familie lösen dieses Korsett teilweise auf. Erst durch dieses Aufbrechen kann sich die Struktur der Zelle verändern – und sie kann wachsen und regenerieren. „Ein Ansatz für künftige regenerative Therapien könnte darin bestehen, auf die Aktin-Filamente in geeigneter Weise einzuwirken”, meint DZNE-Forscherin Barbara Schaffran, die an der aktuellen Studie ebenfalls maßgeblich beteiligt war.

Die Forscher konnten diese Vorgänge an Nervenzellen von Mäusen und Ratten nachvollziehen. Die dabei untersuchten Zellen stammten aus den „dorsalen Wurzelganglien“. Diese Ansammlung von Nervenzellen ist eine Schnittstelle zwischen Rückenmark und peripherem Nervensystem. Die dort angesiedelten Zellen haben jeweils zwei Axone: ein zentrales und ein peripheres. Das periphere Axon kann nach Beschädigungen regenerieren. Schon lange ist bekannt, dass das zentrale Axon ebenfalls nachwachsen kann – allerdings nur dann, wenn zuvor dessen peripheres Pendant verletzt wurde. „Warum die Abfolge so ist, weiß man bis heute nicht genau“, so Bradke. „Das wollen wir uns künftig genauer anschauen.“

Beitrag zur Grundlagenforschung

Schritt für Schritt versuchen die Bonner Wissenschaftler zu verstehen, was Nervenzellen wachsen und regenerieren lässt. Es ist ein langwieriger Prozess. Bradke dämpft daher die Erwartung auf schnelle Fortschritte in der Therapie von Rückenmarksverletzungen. „Wir forschen, um Grundlagen für künftige Therapie zu schaffen. Bis sich daraus neue Behandlungsansätze entwickeln, muss man aber leider Geduld haben. Das ist ein weiter Weg“, sagt er.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Diese Produkte könnten Sie interessieren

Antibody Stabilizer

Antibody Stabilizer von CANDOR Bioscience

Protein- und Antikörperstabilisierung leicht gemacht

Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz

Stabilisierungslösungen
DynaPro NanoStar II

DynaPro NanoStar II von Wyatt Technology

NanoStar II: DLS und SLS mit Touch-Bedienung

Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle

Loading...

Meistgelesene News

Weitere News von unseren anderen Portalen

So nah, da werden
selbst Moleküle rot...