Leber besitzt Struktur ähnlich von Flüssigkristallen

Forscher erstellen erstes naturgetreues 3D-Modell der Leberläppchen

05.07.2019 - Deutschland

Das bisher benutzte, aus dem Jahr 1949 stammende Modell der Leberläppchen konnte nur bedingt veranschaulichen, wie Lebergewebe strukturiert und gebildet wird. Wissenschaftler der Max-Planck-Institute für molekulare Zellbiologie und Genetik sowie für Physik komplexer Systeme haben nun zusammen mit Kollegen der TU Dresden ein neues 3D-Modell der Leber erstellt. Sie haben damit entdeckt, dass die Leber eine organisierte Struktur ähnlich der von Flüssigkristallen aufweist.

© MPI-CBG/ Morales-Navarrete et al.

Rekonstruktion der Hauptstrukturen, die das Leberläppchen bilden: Zentrale (CV) und portale Blutgefäße (PV), Netzwerk aus Sinusoiden (Magenta) & Gallenkanälen (Grün) sowie Hepatozyten (Zufallsfarben).

Die Leber ist das größte Stoffwechselorgan des menschlichen Körpers mit einer komplexen Gewebearchitektur. Diese ist unerlässlich für die Entgiftung des Blutes und den Stoffwechsel. Das Blut fließt über Blutgefäße zu den Leberzellen, den sogenannten Hepatozyten, die Nährstoffe aufnehmen und umwandeln und Galle produzieren, die dann in den Darm gelangt. Wie jedoch beeinflussen sich Zellen untereinander und wie organisieren sie sich, um ein funktionierendes Gewebe zu bilden? Um das zu verstehen, muss man die dreidimensionale Struktur kennen. Die Architektur von Geweben und deren Einfluss auf die Funktion des Gewebes sind heute noch wenig verstanden. Ein interdisziplinäres Team aus Biologen, Physikern und Mathematikern  wollte daher ein neues Modell der Leber entwickeln, das erklären kann, wie Zellen kollektiv Lebergewebe und damit ein gesundes Organ bilden.

Ein von Hand gezeichnetes Modell der grundlegenden Struktur des Leberläppchens wurde 1949 vom Anatomen Hans Elias angefertigt. Seitdem sind nur sehr wenige Fortschritte gemacht worden. Um dieses Problem zu lösen, rekonstruierten die Dresdner Forscher computergestützt die dreidimensionale Geometrie des Gewebes aus mikroskopischen Aufnahmen der Mausleber und analysierten es unter Anwendung physikalischer Konzepte. Obwohl Lebergewebe eher ungeordnet erscheint, haben die Forscher überraschenderweise herausgefunden, dass die Hepatozyten in ihrer Anordnung Flüssigkristallen ähneln, die unter anderem in elektronischen Displays verwendet werden. Flüssigkristalle sind weniger strukturiert als Kristalle, aber organisierter als Moleküle in einer Flüssigkeit.

Kommunikation zwischen Blutgefäßen und Leberzellen

Hernán Morales-Navarrete, Postdoktorand im Labor von Marino Zerial am Max-Planck-Institut für molekulare Zellbiologie und Genetik, erklärt: „Unsere Ergebnisse deuten darauf hin, dass Leberzellen und Sinusoide, die kleinsten Blutgefäße im Körper, in beide Richtungen miteinander kommunizieren: Die Blutgefäße geben den Hepatozyten Anweisungen und die Hepatozyten senden Signale an die Blutgefäße zurück, um die Flüssigkristall-Anordnung herzustellen und zu erhalten. Diese beidseitige Kommunikation ist ein zentraler Bestandteil der Selbstorganisation des Lebergewebes.“ Eine solche Architektur verleiht dem Gewebe Funktion und Widerstandsfähigkeit gegenüber lokalen Schäden.

Marino Zerial, der auch dem Zentrum für Systembiologie Dresden angehört, fasst zusammen: „Wir haben neue Prinzipien der Struktur und Organisation von Lebergewebe entdeckt. Nur wenn wir verstehen, wie Lebergewebe gebildet und daraus ein funktionierendes Organ entsteht, können wir Anomalien und Fehlfunktionen beim Menschen besser erkennen. Darüber hinaus bietet unsere Studie auch eine allgemeine Grundlage, um die Interaktion von Zellen und ihre Organisation in Gewebe besser zu verstehen“.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Revolutioniert künstliche Intelligenz die Life Sciences?