Längeres Leben für Bioelektroden
© RUB, Marquard
Proteine, die an der Fotosynthese beteiligt sind, lassen sich nutzen, um kostengünstig und effizient Strom aus Sonnenenergie herzustellen. Doch obwohl diese Proteine wie das Photosystem I von Natur aus robust sind, ist die Lebensdauer isolierter Proteinkomplexe in halbkünstlichen Elektroden deutlich kürzer. Deswegen ist die technologische Anwendung solcher Bioelektroden noch begrenzt. Ein Forscherteam der Ruhr-Universität Bochum (RUB) hat jetzt gezeigt, dass der Betrieb in sauerstofffreier Umgebung die Lebensdauer der Bioelektrode deutlich verlängert.
Das Team um Dr. Fangyuan Zhao, Dr. Adrian Ruff, Dr. Felipe Conzuelo und Prof. Dr. Wolfgang Schuhmann vom Zentrum für Elektrochemie sowie Prof. Dr. Matthias Rögner vom Lehrstuhl für Pflanzenbiochemie berichtet im „Journal of the American Chemical Society“.
Grüne Energie nutzen
„Um nachhaltig und effizient Energie zu erzeugen, müssen wir die Prozesse, die die Lebensdauer von Technologien zur Umwandlung erneuerbarer Energien begrenzen, nicht nur verstehen, sondern auch überwinden“, sagt Wolfgang Schuhmann. Der Einsatz von Proteinkomplexen, die an der Photosynthese von Pflanzen beteiligt sind, ist dabei von besonderem Interesse. Zum einen setzen diese Proteine sehr effizient solare in elektrische Energie um, zum anderen sind sie in großem Maßstab in der Natur verfügbar.
Sauerstoff ist schuld
Die Forscher haben bereits in vorangegangenen Arbeiten gezeigt, dass beim Betrieb der Bioelektrode reaktive Moleküle entstehen, die das Photosystem I schädigen und für die begrenzte Lebensdauer der Bioelektrode verantwortlich sind. Diese reaktiven Spezies entstehen durch Sauerstoff, der als Elektronenakzeptor fungiert. „Daher haben wir das Design von Bioelektroden vorgeschlagen, die in einer sauerstofffreien Umgebung arbeiten“, erklärt Felipe Conzuelo.
Schritt zur Anwendung
Tests haben nun belegt, dass sich die Lebensdauer der Bioelektroden unter Ausschluss von Sauerstoff gegenüber dem Betrieb unter dem Einfluss von Sauerstoff deutlich erhöht. „Wir haben damit einen wichtigen Schritt zur effizienten Entwicklung und späteren Anwendung von Photobioelektroden zur Energieumwandlung gemacht“, so Fangyuan Zhao.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Antibody Stabilizer von CANDOR Bioscience
Protein- und Antikörperstabilisierung leicht gemacht
Langzeitlagerung ohne Einfrieren – Einfache Anwendung, zuverlässiger Schutz
DynaPro NanoStar II von Wyatt Technology
NanoStar II: DLS und SLS mit Touch-Bedienung
Größe, Partikelkonzentration und mehr für Proteine, Viren und andere Biomoleküle
Holen Sie sich die Life-Science-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.