Blinzelcode für Moleküle
Superauflösende Mikroskopie erfasst gleichzeitig zahlreiche verschiedene Moleküle in einer Zelle
J.B. Woehrstein, F. Stehr, M.T. Strauss
Blinksignale für die Nanowelt: Ralf Jungmann, Professor für Experimentalphysik an der LMU und Leiter der Forschungsgruppe Molekulare Bildgebung und Bionanotechnologie am Max-Planck-Institut für Biochemie (Martinsried), nutzt winzige fluoreszierende Sonden, um Vorgänge auf molekularer Ebene sichtbar zu machen. Nun hat er mit seinem Team einen entscheidenden Fortschritt erzielt: Die Wissenschaftler entwickelten eine Methode, mit der sie zahlreiche verschiedene Moleküle in einer Zelle gleichzeitig erfassen können. Dies könnte zukünftig bessere Diagnosemöglichkeiten eröffnen.
„Unser Konzept basiert auf der Bildgebungsmethode DNA-PAINT, bei der fluoreszierende Sonden auf der Basis synthetischer DNA verwendet werden, um Vorgänge auf molekularer Ebene sichtbar zu machen“, sagt Jungmann. Dabei sind Farbstoffe an kurze DNA-Stränge gebunden, die detektiert werden, wenn der DNA-Strang an sein Gegenstück bindet. Durch wiederholtes An- und Abbinden der Stränge entsteht dann ein Blinksignal. Bisher war diese Methode auf eine serielle Detektion ausgelegt, sodass pro Messdurchgang nur eine Molekülspezies abgebildet werden konnte.
In dem neuen Ansatz werden die Zielmoleküle so modifiziert, dass sie alle von derselben Sonde angesteuert werden – aber jeweils eine unterschiedliche Anzahl von Bindeplätzen für die Sonde aufweisen. „Durch die Modifikation wird das Blinksignal verändert: Wenn beispielsweise Molekül A fünf Bindestellen aufweist und Molekül B zehn, dann blinkt B doppelt so schnell wie A – auf diese Weise bekommt jedes Zielmolekül einen charakteristischen Blinzelcode“, sagt Jungmann. „Mithilfe dieser Methode können wir theoretisch hunderte molekulare Bestandteile wie Proteine und Nukleinsäuren in ungefähr 15 bis 20 Minuten mit hoher Genauigkeit auslesen.“ In einem ersten Test gelang es den Forschern, verschiedene RNA-Moleküle und Proteine gleichzeitig in der Zelle zu detektieren. „Insgesamt können wir derzeit maximal 124 Ziele gleichzeitig abbilden, die unterschiedlich blinken. Gezeigt haben wir das mit Hilfe sogenannter DNA-Origami-Strukturen“, sagt Jungmann. Der Ansatz eröffnet damit neue Möglichkeiten, das Protein- und RNA-Inventar der Zelle zu untersuchen und krankheitsbedingte Veränderungen oder therapeutisch relevante Strukturen wie etwa bestimmte Oberflächenproteine zu erfassen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Diese Produkte könnten Sie interessieren
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.
Themenwelt Fluoreszenzmikroskopie
Die Fluoreszenzmikroskopie hat die Life Sciences, Biotechnologie und Pharmazie revolutioniert. Mit ihrer Fähigkeit, spezifische Moleküle und Strukturen in Zellen und Geweben durch fluoreszierende Marker sichtbar zu machen, bietet sie einzigartige Einblicke auf molekularer und zellulärer Ebene. Durch ihre hohe Sensitivität und Auflösung erleichtert die Fluoreszenzmikroskopie das Verständnis komplexer biologischer Prozesse und treibt Innovationen in Therapie und Diagnostik voran.